OR Spectrum

, Volume 32, Issue 3, pp 831–859 | Cite as

Adaptive demand peak management in online transport process planning

Regular Article


We investigate the common and integrated dynamic decision making of the coordinator of a supply chain consortium together with a subordinate fleet managing agent offering transport services for the consortium. While the fleet manager aims at minimizing the costs of the generated transport processes, the goal of the coordinator is to keep the reliability and stability of the processes on a reasonable level. It aims to synchronize the transport processes with upstream and downstream parts of the supply chain. The major innovation presented in this article is a framework that controls and adjusts the decision competence distribution between the two planning agents with respect to the current transport process performance. If the transport process timeliness is endangered to fall below a given threshold and thereby the overall supply chain reliability tends to sink, the coordinator is temporarily granted the right to intervene into the planning of the fleet managing agent. Within simulation experiments, we demonstrate that the proposed system is able to increase the reliability of the generated transport processes. We show that the intervention of the superior coordinator agent during workload peaks ensures higher process timeliness than the transport service providing agent is able to achieve without any coordinator interventions.


Dynamic decision problem Transportation Online optimization Adaptation Principal–agent relationship 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albers S, Charikar M, Mitzenmacher M (2001) Delayed information and action in on-line algorithms. Inf Comput 170(2): 135–152CrossRefGoogle Scholar
  2. Andersen ED, Andersen KD (1995) Presolving in linear programming. Math Program 71: 221–245Google Scholar
  3. Arnold M, Fink SJ, Grove D, Hind M, Sweeney PF (2005) A survey of adaptive optimization in virtual machines. In: Proceedings of the IEEE 2005 93(2):449–466Google Scholar
  4. Ausiello G, Feuerstein E, Leonardi S, Stougie L, Talamo M (1994) Serving requests with on-line routing. In: Schmidt EM, Skyum S (eds) Proceedings of 4th Scandinavian Workshop on algorithm theory. Springer, Berlin, pp 37–48Google Scholar
  5. Bierwirth C (1999) Adaptive search and the management of logistics systems. Kluwer, DordrechtGoogle Scholar
  6. Black F, Scholes M (1973) The pricing of options and corporate liabilities. J Political Econ 81(3): 637–654CrossRefGoogle Scholar
  7. Brage Illa A (1966) Critical probabilities and determinism in decision theory. Calcolo 2(2): 117–130CrossRefGoogle Scholar
  8. Branke J (2001) Evolutionary optimization in dynamic environments. Kluwer, DordrechtGoogle Scholar
  9. Branke J, Mattfeld DC (2005) Anticipation and flexibility in dynamic scheduling. Int J Prod Res 43(15): 3103–3129CrossRefGoogle Scholar
  10. Brehmer B (1992) Dynamic decision making: human control of complex systems. Acta Psychologica 81: 211–241CrossRefGoogle Scholar
  11. Busemeyer JR (2001) Dynamic decision making. In: International encyclopedia of the social and behavioral sciences: methodology. Mathematic and computer science. Elsevier, Amsterdam, pp 3903–3908Google Scholar
  12. Calza F, Passaro R (1997) EDI network and logistics management at Unilever-Sagit. Supply Chain Manag Int J 2(4): 158–170CrossRefGoogle Scholar
  13. Crainic T, Laporte G (1997) Planning models for freight transportation. Eur J Oper Res 122: 409–438CrossRefGoogle Scholar
  14. Delaitre L, Awasthi A, Molet H, Breuil D (2007) A multiple container loading problem based algorithm for efficient allocation of goods to vehicles. In: Proceedings of the 18th IASTED International Conference. pp 313–317Google Scholar
  15. Erera A, Karacık B, Savelsbergh M (2008) A dynamic driver management scheme for less-than-truckload carriers. Comput Oper Res 35: 3397–3411CrossRefGoogle Scholar
  16. Feillet D, Dejax P, Gendreau M (2005) Traveling salesman problems with profits. Transp Sci 39: 188–205CrossRefGoogle Scholar
  17. Fleischmann B, Gnutzmann S, Sandvoß E (2004) Dynamic vehicle routing based on online traffic information. Transp Sci 28: 420–433CrossRefGoogle Scholar
  18. Fleischmann B, Gietz M, Gnutzmann S (2004) Time-varying travel times in vehicle routing. Transp Sci 38(2): 160–173CrossRefGoogle Scholar
  19. Garfinkel RS (1985) Motivation and modeling. In: Lawler EL, Lenstra JK, Rinnooy Kan AHG, Shmoys DB (eds) The traveling salesman problem. Wiley, New YorkGoogle Scholar
  20. Gendreau M, Laporte G, Semet F (2004) Heuristics and lower bounds for the bin packing problem with conflicts. Comput Oper Res 31(3): 347–358CrossRefGoogle Scholar
  21. Golden BL, Assad AA (eds) (1988) Vehicle routing: methods and studies. Elsevier, North-HollandGoogle Scholar
  22. Golden, B, Raghavan, S, Wasil, E (eds) (2008) The vehicle routing problem. Springer, New YorkGoogle Scholar
  23. Grötschel M, Krumke SO, Torres LM (2002) Online-dispatching of automobile service units. In: Leopold-Wildburger U, Rendl F, Wäscher G (eds) Operations research proceedings. Springer, Berlin, pp 168–173Google Scholar
  24. Gutenschwager K (2002) Online-Dispositionsprobleme in der Lagerlogistik. Physica-Verlag, HeidelbergGoogle Scholar
  25. Gutenschwager K, Böse J, Voß S (2003) Effiziente Prozesse im Kombinierten Verkehr—Ein neuer Lösungsansatz zur Disposition von Portalkränen. Logistikmanagement 5(1): 62–73Google Scholar
  26. Gutenschwager K, Niklaus C, Voß S (2004) Dispatching of an electric monorail system: applying metaheuristics to an online pickup and delivery problem. Transp Sci 38(4): 434–446CrossRefGoogle Scholar
  27. Hadjiconstantinou E, Roberts D (2002) Routing under uncertainty: an application in the scheduling of field service engineers. In: Toth P, Vigo D (eds) The vehicle routing problem. SIAM, Philadelphia, pp 331–353Google Scholar
  28. Hiller B, Krumke SO, Rambau J (2006) Reoptimization gaps versus model errors in online-dispatching of service units for ADAC. Discret Appl Math 154: 1897–1907CrossRefGoogle Scholar
  29. Ichoua S, Gendreau M, Potvin J-Y (2003) Vehicle dispatching with time-dependent travel times. Eur J Oper Res 144: 379–396CrossRefGoogle Scholar
  30. Jensen M, Meckling W (1976) Theory of the firm. Managerial behavior, agency costs, and ownership structure. J Financial Econ 3(4): 305–360CrossRefGoogle Scholar
  31. Kalleberg AL, Reynolds J, Marsden PV (2003) Externalizing employment: flexible staffing arrangements in US organizations. Soc Sci Res 32: 525–552CrossRefGoogle Scholar
  32. Kaluza B, Dullnig H, Malle F (2003) Principal-Agent-Probleme in der Supply Chain—Problemanalyse und Diskussion von Lösungsvorschlägen. Discussion paper 2003/03 of the College of Business Administration. University of Klagenfurt, AustriaGoogle Scholar
  33. Kopfer H, Krajewska M (2007) Approaches for modelling and solving the integrated transportation and forwarding problem. In: Corsten H, Missbauer H (eds) Produktions- und Logistikmanagement. Verlag Franz Vahlen, Munich, pp 439–458Google Scholar
  34. Krajewska M, Kopfer H, Laporte G, Ropke S, Zaccour G (2008) Horizontal cooperations among freight carriers: request allocation and profit sharing. J Oper Res Soc 59(11): 1483–1491CrossRefGoogle Scholar
  35. Krajewska M, Kopfer H (2009) Transportation planning in freight forwarding companies—Tabu Search algorithm for the integrated operational transportation planning problem. Eur J Oper Res (to appear)Google Scholar
  36. Krumke SO, Rambau J, Torres LM (2002) Realtime-dispatching of guided and unguided automobile service units with soft time windows. In: Möhring RH, Raman R (eds) Algorithms—ESA 2002, 10th Annual European Symposium, Lecture Notes in Computer Science 2461, Springer, BerlinGoogle Scholar
  37. Laux H (1982) Entscheidungstheorie. Springer, HeidelbergGoogle Scholar
  38. Larsen A, Madsen OGB, Solomon MM (2008) Recent Developments in dynamic vehicle routing. In: Golden B, Raghavan S, Wasil E (eds) The vehicle routing problem. Springer, New York, pp 199–218CrossRefGoogle Scholar
  39. Lindstaedt H (2007) Problemlösen und Verstehen bei ökonomischen Agenten—eine Gegenüberstellung ökonomischer und kognitionspsychologischer Modelle regelbasierten Entscheidens. NeuroPsychoEconomics 2: 30–43Google Scholar
  40. Littman ML, Dean TL, Kaelbling LP (1995) On the complexity of solving Markov decision problems. In: Proceedings of the 11th Conference on uncertainty in artificial intelligence. pp 394–402Google Scholar
  41. Liu Y-H (2007) A hybrid scatter search for the probabilistic traveling salesman problem. Comput Oper Res 34: 2949–2963CrossRefGoogle Scholar
  42. Lo S-C, Hall RW (2008) The design of real-time logistics information system for trucking industry. Comput Oper Res 35: 3439–3451CrossRefGoogle Scholar
  43. Lund K, Madsen OBG, Rygaard JM (1996) Vehicle routing problems with varying degrees of dynamism. Institute of Mathematical Modelling (IMM), Technical University of Denmark, Lyngby, Technical Report, No. IMM-REP-1996-1Google Scholar
  44. Madsen OGB, Tosti K, Vælds J (1995) A heuristic method for dispatching repair men. Ann Oper Res 61: 213–226CrossRefGoogle Scholar
  45. McKendall AR Jr, Jaramillo JR (2006) A tabu search heuristic for the dynamic space allocation problem. Comput Oper Res 33: 768–789CrossRefGoogle Scholar
  46. Mitrović-Minić S, Krishnamurti R, Laporte G (2004) Double-horizon based heuristic for the dynamic pickup and delivery problem with time windows. Transp Res B 38: 635–655CrossRefGoogle Scholar
  47. Moreira LM, Oliveira JF, Gomes AM, Ferreira JS (2007) Heuristics for a dynamic rural postman problem. Comput Oper Res 34: 3281–3294CrossRefGoogle Scholar
  48. Munera HA (1984) The generalized means model (GMM) for non-deterministic decision making: its normative and descriptive power, including sketch of the representation theorem. Theor Decis 18: 173–202CrossRefGoogle Scholar
  49. Pankratz G (2002) Speditionelle Transportdisposition. DUV Gabler, WiesbadenGoogle Scholar
  50. Psaraftis HN (1988) Dynamic vehicle routing problems. In: Golden BL, Assad AA (eds) Vehicle routing: methods and studies. Elsevier, North-HollandGoogle Scholar
  51. Psaraftis HN (1995) Dynamic vehicle routing: status and prospects. Ann Oper Res 61: 143–164CrossRefGoogle Scholar
  52. Potvin J-Y, Xu Y, Benyahia I (2006) Vehicle routing and scheduling with dynamic travel times. Comput Oper Res 33: 1129–1137CrossRefGoogle Scholar
  53. Powell WB (1996) A stochastic formulation of the dynamic assignment problem, with an application to truckload motor carriers. Transp Sci 30(3): 195–219CrossRefGoogle Scholar
  54. Powell WB, Cheung RK (2000) Adaptive labeling algorithms for the dynamic assignment problem. Transp Sci 34(1): 50–66CrossRefGoogle Scholar
  55. Rajagopalan HK, Saydam C, Xiao J (2008) A multiperiod set covering location model for dynamic redeployment of ambulances. Comput Oper Res 35(3): 814–826CrossRefGoogle Scholar
  56. Ramamritham K, Stankovic JA (1994) Scheduling and operating system support for real-time systems. In: Proceedings of the IEEE. pp 55–67Google Scholar
  57. Rego C, Roucairol C (1995) Using Tabu search for solving a dynamic multi-terminal truck dispatching problem. Eur J Oper Res 83: 411–429CrossRefGoogle Scholar
  58. Ronen B, Coman A, Schragenheim E (2001) Peak management. Int J Prod Res 39(14): 3183–3193CrossRefGoogle Scholar
  59. Saéz D, Cortéz CE, Núñes A (2008) Hybrid adaptive predictive control for the multi-vehicle dynamic pick-up and delivery problem based on genetic algorithms and fuzzy clustering. Comput Oper Res 35(11): 3412–3438CrossRefGoogle Scholar
  60. Schönberger J (2005) Operational freight carrier planning. Springer, HeidelbergGoogle Scholar
  61. Schönberger J, Kopfer H (2007) On decision model adaptation in online optimization of a transport system. In: Günther H-O, Mattfeld DC, Suhl L (eds) Management logistischer Netzwerke. Physica-Verlag, Heidelberg, pp 361–381CrossRefGoogle Scholar
  62. Schönberger J, Kopfer H (2007) On the value of objective function adaptation in online optimization. In: Kalcsics J, Nickel S (eds) Operations research proceedings 2007. Springer, Berlin, pp 491–496Google Scholar
  63. Schönberger J, Kopfer H (2009a) Transport system responsiveness improvement. Int J Phys Distrib Logist Manag 39(1): 63–79CrossRefGoogle Scholar
  64. Schönberger J, Kopfer H (2009b) Online decision making and automatic decision model adaptation. Comput Oper Res 36(6): 1740–1750CrossRefGoogle Scholar
  65. Schönberger J, Kopfer H (2008) Schedule nervousness reduction in transport re-planning. Commun SIWN 3: 7–14Google Scholar
  66. Schönberger J, Kopfer H (2009) Rules for the identification of portfolio-incompatible requests in dynamic vehicle routing. In: Hansen HR, Karagiannis D, Fill H-G (eds) Proceedings of Wirtschaftsinformatik 2009, Band 2Google Scholar
  67. Séguin R, Potvin J-Y, Gendreau M, Crainic TG, Marcotte P (1997) Real-time decision problems: an operations research perspective. J Oper Res Soc 48(2): 162–174Google Scholar
  68. S̆egvić S, Remazeilles A, Chaumette F (2006) Enhancing the point feature tracker by adaptive modelling of the feature support. In: Leonardis A, Bischof H, Pinz A (eds) ECCV 2006. Springer, Berlin, pp 112–124Google Scholar
  69. Seiden S (1996) Randomized online scheduling with delivery times. J Comb Optim 3: 399–416CrossRefGoogle Scholar
  70. Sellmaier S (2007) Langfristiges Entscheiden. LIT Verlag, Berlin-Hamburg-MünsterGoogle Scholar
  71. Solnon C (2002) Boosting ACO with a preprocessing step. In: Cagnoni S, Gottlieb J, Hart E, Middendorf M, Raidl GR (eds) (2002) Applications of evolutionary computing. Springer, Berlin, pp 163–172Google Scholar
  72. Solomon MM (1987) Algorithms for the vehicle routing and scheduling problem with time window constraints. Oper Res 35(2): 254–265CrossRefGoogle Scholar
  73. Tang H, Miller-Hooks E (2007) Solving a generalized traveling salesperson problem with stochastic customers. Comput Oper Research 34: 1963–1987CrossRefGoogle Scholar
  74. Toth, P, Vigo, D (eds) (2002) The vehicle routing problem. SIAM, PhiladelphiaGoogle Scholar
  75. Williams TM (1984) Special products and uncertainty in production/inventory systems. Eur J Oper Res 15(1): 46–54CrossRefGoogle Scholar
  76. Woolridge MJ (2002) An introduction to multiagent systems. Wiley, ChichesterGoogle Scholar
  77. Zäpfel G (1982) Produktionswirtschaft: Operatives Produktions-Management. de Gruyter, BerlinGoogle Scholar
  78. Zeimpekis V, Giaglis GM (2005) A dynamic real-time fleet management system for incident handling in city logistics. In: Proceedings of 61st IEEE Vehicular Technology Conference (VTC2005 Spring)Google Scholar
  79. Zeimpekis, V, Tarantilis, CD, Giaglis, GM, Minis, I (eds) (2007) Dynamic fleet management. Springer, New YorkGoogle Scholar
  80. Zeimpekis V, Minis I, Mamassis K, Giaglis GM (2007) Dynamic management of a delayed delivery vehicle in a City Logistics environment. In: Zeimpekis V, Tarantilis CD, Giaglis GM, Minis I (eds) Dynamic fleet management. Springer, New York, pp 197–217CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Chair of LogisticsUniversity of BremenBremenGermany

Personalised recommendations