OR Spectrum

, Volume 32, Issue 1, pp 211–227 | Cite as

Pareto navigator for interactive nonlinear multiobjective optimization

  • Petri Eskelinen
  • Kaisa Miettinen
  • Kathrin Klamroth
  • Jussi Hakanen
Regular Article


We describe a new interactive learning-oriented method called Pareto navigator for nonlinear multiobjective optimization. In the method, first a polyhedral approximation of the Pareto optimal set is formed in the objective function space using a relatively small set of Pareto optimal solutions representing the Pareto optimal set. Then the decision maker can navigate around the polyhedral approximation and direct the search for promising regions where the most preferred solution could be located. In this way, the decision maker can learn about the interdependencies between the conflicting objectives and possibly adjust one’s preferences. Once an interesting region has been identified, the polyhedral approximation can be made more accurate in that region or the decision maker can ask for the closest counterpart in the actual Pareto optimal set. If desired, (s)he can continue with another interactive method from the solution obtained. Pareto navigator can be seen as a nonlinear extension of the linear Pareto race method. After the representative set of Pareto optimal solutions has been generated, Pareto navigator is computationally efficient because the computations are performed in the polyhedral approximation and for that reason function evaluations of the actual objective functions are not needed. Thus, the method is well suited especially for problems with computationally costly functions. Furthermore, thanks to the visualization technique used, the method is applicable also for problems with three or more objective functions, and in fact it is best suited for such problems. After introducing the method in more detail, we illustrate it and the underlying ideas with an example.


Multicriteria optimization MCDM Interactive methods Decision support Pareto optimality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benayoun R, de Mongolfier J, Tergny J, Larichev O (1971) Linear programming with multiple objective functions: STEP method (STEM). Math Program 1: 366–375CrossRefGoogle Scholar
  2. Chankong V, Haimes YY (1983) Multiobjective decision making: theory and methodology. Elsevier, New YorkGoogle Scholar
  3. Craft D (2007) Pareto Surface Navigator., File Id: 13875
  4. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, ChichesterGoogle Scholar
  5. Hwang C-L, Masud ASM (1979) Multiple objective decision making—methods and applications: a state-of-the-art survey. Lecture notes in economics and mathematical systems, vol 164. Springer, BerlinGoogle Scholar
  6. Jaszkiewicz A, Slowiński R (1999) The light beam search approach—an overview of methodology and applications. Eur J Oper Res 113: 300–314CrossRefGoogle Scholar
  7. Kaliszewski I (2004) Out of the mist—towards decision-maker-friendly multiple criteria decision making support. Eur J Oper Res 158: 293–307CrossRefGoogle Scholar
  8. Klamroth K, Miettinen K (2008) Integrating approximation and interactive decision making in multicriteria optimization. Oper Res 56(1): 222–234CrossRefGoogle Scholar
  9. Klamroth K, Tind J, Wiecek MM (2002) Unbiased approximation in multicriteria optimization. Math Meth Oper Res 56: 413–437Google Scholar
  10. Köksalan M, Plante RD (2003) Interactive multicriteria optimization for multiple-response product and process design. Manuf Serv Oper Manage 5: 334–347CrossRefGoogle Scholar
  11. Korhonen P, Wallenius J (1988) A Pareto race. Naval Res Logist 35: 615–623CrossRefGoogle Scholar
  12. Lotov AV, Bushenkov VA, Kamenev GK (2004) Interactive decision maps. Approximation and visualization of Pareto frontier. Kluwer, DordrechtGoogle Scholar
  13. Miettinen K (1999) Nonlinear multiobjective optimization. Kluwer, BostonGoogle Scholar
  14. Miettinen K, Mäkelä MM (1995) Interactive bundle-based method for nondifferentiable multiobjective optimization: NIMBUS. Optimization 34: 231–246CrossRefGoogle Scholar
  15. Miettinen K, Mäkelä MM (2000) Interactive multiobjective optimization system WWW-NIMBUS on the internet. Comput Oper Res 27: 709–723CrossRefGoogle Scholar
  16. Miettinen K, Mäkelä MM (2002) On scalarizing functions in multiobjective optimization. OR Spectr 24: 193–213CrossRefGoogle Scholar
  17. Miettinen K, Mäkelä MM (2006) Synchronous approach in interactive multiobjective optimization. Eur J Oper Res 170: 909–922CrossRefGoogle Scholar
  18. Monz M, Küfer KH, Bortfeld TR, Thieke C (2008) Pareto navigation—algorithmic foundation of interactive multi-criteria IMRT planning. Phys Med Biol 53: 985–998CrossRefGoogle Scholar
  19. Nakayama H, Sawaragi Y (1984) Satisficing trade-off method for multiobjective programming. In: Grauer M, Wierzbicki AP (eds) Interactive decision analysis. Springer, Heidelberg, pp 113–122Google Scholar
  20. Ruzika S, Wiecek MM (2005) Approximation methods in multiobjective programming. J Optim Theory Appl 126: 473–501CrossRefGoogle Scholar
  21. Sawaragi Y, Nakayama H, Tanino T (1985) Theory of multiobjective optimization. Academic Press, New YorkGoogle Scholar
  22. Steuer RE (1986) Multiple criteria optimization: theory, computation and applications. Wiley, New YorkGoogle Scholar
  23. Vanderpooten D (1989) The interactive approach in MCDA: a technical framework and some basic concceptions. Math Comput Modell 12(10–11): 1213–1220CrossRefGoogle Scholar
  24. Wierzbicki AP (1980) The use of reference objectives in multiobjective optimization. In: Fandel G, Gal T (eds) Multiple criteria decision making theory and applications. Springer, Berlin, pp 468–486Google Scholar
  25. Wierzbicki AP (1982) A mathematical basis for satisficing decision making. Math Modell 3(25): 391–405CrossRefGoogle Scholar
  26. Wierzbicki AP (1986) On the completeness and constructiveness of parametric characterizations to vector optimization problems. OR Spectr 8(2): 73–87Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Petri Eskelinen
    • 1
  • Kaisa Miettinen
    • 2
  • Kathrin Klamroth
    • 3
  • Jussi Hakanen
    • 2
  1. 1.Helsinki School of EconomicsHelsinkiFinland
  2. 2.Department of Mathematical Information TechnologyUniversity of JyväskyläJyväskyläFinland
  3. 3.Department of MathematicsUniversity of WuppertalWuppertalGermany

Personalised recommendations