Advertisement

OR Spectrum

, 31:311 | Cite as

Modeling and optimizing of strategic and tactical production planning in the automotive industry under uncertainty

  • Ralf BihlmaierEmail author
  • Achim KobersteinEmail author
  • René Obst
Regular Article

Abstract

This work considers the strategic flexibility and capacity planning under uncertain demands in production networks of automobile manufacturers. We present a deterministic and a stochastic model, which extend existing approaches, especially by an anticipation scheme for tactical workforce planning. This scheme is compared to an extended formulation of the deterministic model, which incorporates workforce planning via detailed shift models. The stochastic model is efficiently solved by an accelerated decomposition approach. The solution approach is integrated into a decision support system, which calculates minimum-cost product allocations and capacity plans. Our numerical results show that, in spite of the considerably increased complexity, our approach can efficiently handle hundreds of scenarios. Finally, we present an industrial case study.

Keywords

Strategic network design Anticipation of tactical planning Stochastic programming Decomposition approach 

References

  1. Alonso-Ayuso A, Escudero LF, Garfín A, Ortuño MT, Pérez G (2003) An approach for strategic supply chain planning under uncertainty based on stochastic 0–1 programming. J Global Optim 26(1): 97–124CrossRefGoogle Scholar
  2. Arntzen BC, Brown GG, Harrison TP, Traffton LL (1995) Global supply chain management at digital equipment corporation. Interfaces 25(1): 69–93CrossRefGoogle Scholar
  3. Askar G, Zimmermann J (2006) Optimal usage of flexibility instruments in automotive plants. Oper Res Proc, pp 479–484Google Scholar
  4. Barnett L, Leaney PG, Matke J (1995) Striving for manufacturing flexibility in body construction. In: Proceedings of the IMechE AutoTech/95 ConferenceGoogle Scholar
  5. Beamon BM (1998) Supply chain design and analysis: Models and methods. Int J Prod Econ 55(3): 281–294CrossRefGoogle Scholar
  6. Becker H (2005) Auf Crashkurs. Automobilindustrie im globalen Verdrängungswettbewerb. Springer, BerlinGoogle Scholar
  7. Benders JF (1962) Partitioning prodedures for solving mixed-variables programming problems. Numer Math 4: 238–252CrossRefGoogle Scholar
  8. Birge JR, Louveaux F (1988) A multicut algorithm for two-stage stochastic linear programs. Euro J Oper Res 34(3): 384–392CrossRefGoogle Scholar
  9. Birge JR, Louveaux F (1997) Introduction to stochastic programming. Springer Series in Operations Research. Springer, New YorkGoogle Scholar
  10. Boettcher J (1989) Stochastische lineare Programme mit Kompensation, Mathematical systems in economics. vol 115. Athenäum, Frankfurt am MainGoogle Scholar
  11. Boyer KK, Leong GK (1996) Manufacturing flexibility at the plant level. Omega Int J Manage Sci 24(5): 495–510CrossRefGoogle Scholar
  12. Bruynesteyn M (2003) Flex appeal. Prudential Equity Group, LLCGoogle Scholar
  13. Chandra C, Everson M, Grabis J (2005) Evaluation of enterprise-level benefits of manufacturing flexibility. Omega Int J Manage Sci 33(1): 17–31CrossRefGoogle Scholar
  14. Cordeau SF, Pasin F, Solomon MM (2006) An integrated model for logistics network design. Ann Oper Res 144(1): 59–82CrossRefGoogle Scholar
  15. Ferber S (2005) Strategische Kapazitäts- und Investitionsplanung in der globalen Supply Chain eines Automobilherstellers. Shaker, IndianapolisGoogle Scholar
  16. Fleischmann B, Ferber S, Henrich P (2006) Strategic planning of BMW’s global production network. Interfaces 36: 194–208CrossRefGoogle Scholar
  17. Francas D, Kremer M, Minner S, Friese M (2007) Strategic process flexibility under lifecycle demand. Int J Prod Econ. doi: 10.1016/j.ijpe.2006.12.062
  18. Friese M, Bihlmaier R, Buerkner S (2005) Planning of flexible production networks in the automotive industry. In: International conference on changeable, agile, reconfigurable and virtual production, Muenchen, 22–23, SeptemberGoogle Scholar
  19. Geoffrion AM, Graves GW (1974) Multicommodity distribution system design by benders decomposition. Manage Sci 20(5): 822–844CrossRefGoogle Scholar
  20. Gerwin D (1982) Do’s and don’ts of computerized manufacturing. Harvard Bus Rev 60(2): 107–116Google Scholar
  21. Goetschalckx Strategic Network Planning. BT and Centre for Automotive Industry Research, Cardiff (2001)Google Scholar
  22. Goetschalckx M (2002) Strategic network planning. In: Stadtler H, Kilger  C (eds) Supply chain management and advanced planning. Springer, Heidelberg, pp 105–122Google Scholar
  23. ILOG Inc. ILOG CPLEX 10.0 Advanced reference manual. ILOG CPLEX Division, France, 2006Google Scholar
  24. Jordan WC, Graves SC (1995) Principles on the benefits of manufacturing process flexibility. Manage Sci 41(4): 577–594CrossRefGoogle Scholar
  25. Kall P, Wallace SW (1994) Stochastic programming. Wiley, ChichesterGoogle Scholar
  26. Larranaga P, Lozano JA (2001) Estimation of distribution algorithms: a new tool for evolutionary computation. Springer, HeidelbergGoogle Scholar
  27. Meyer B (2004) Value-adding logistics for a world assembly line. Bonifatius Verlag, PaderbornGoogle Scholar
  28. MirHassani SA, Lucas C, Mitra G, Messina E, Poojari CA (2000) Computational solution of capacity planning models under uncertainty. Parallel Comput 26(5): 511–538CrossRefGoogle Scholar
  29. Pibernik R (2001) Flexibilitätsplanung in Wertschöpfungsnetzwerken, 1 edn. Dt. Universitäts-Verlag, WiesbadenGoogle Scholar
  30. Roscher J (2008) Bewertung von Flexibilitätsstrategien fuer die Endmontage in der Automobilindustrie. PhD Thesis, Institut für Industrielle Fertigung und Fabrikbetrieb, Universität StuttgartGoogle Scholar
  31. Ruszczyński A, Shapiro A (2003) Stochastic Programming, Handbooks in Operations Research and Management Science. vol 10. Academic Press, AustraliaGoogle Scholar
  32. Santoso T (2003) A comprehensive model and efficient solution algorithm for the design of global supply chains under uncertainty. PhD Thesis, Georgia Institute of TechnologyGoogle Scholar
  33. Santoso T, Ahmed S, Goetschalckx M, Shapiro A (2005) A stochastic programming approach for supply chain network design under uncertainty. Euro J Oper Res 167(1): 96–115CrossRefGoogle Scholar
  34. Schneeweiss C (1999) Hierarchies in distributed decision making. Springer, BerlinGoogle Scholar
  35. Sethi A, Sethi S (1990) Flexibility in manufacturing: a survey. Int J Flexible Manufact Syst 2(4): 289–328Google Scholar
  36. Vidal CJ, Goetschalckx M (2000) Modeling the impact of uncertainties on global logistics systems. J Bus Logistics 29(1): 95–120Google Scholar
  37. Wentges P (1996) Accelerating bender’s decomposition for the capacitated facility location problem. Math Methods Oper Res 44: 267–290CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Daimler AGGroup Research and Advanced EngineeringUlmGermany
  2. 2.DS & OR LabUniversity of PaderbornPaderbornGermany

Personalised recommendations