OR Spectrum

, Volume 32, Issue 1, pp 21–48 | Cite as

A Stackelberg-Nash model for new product design

  • Winfried J. SteinerEmail author
Regular Article


Existing conjoint approaches to optimal new product design have focused on the Nash equilibrium concept to model competitive reactions. Whereas these approaches have treated all competing firms equally as Nash players, one firm may have an advantage over its rivals, e.g., more pre-experience on competitors’ behavior and/or a first-mover advantage. This paper proposes a Stackelberg-Nash (leader-followers) model which can accomodate such information for decision making. The optimal product design problem is formulated from the perspective of a profit-maximizing new entrant (the leader) who wants to launch a brand onto an existing product market and acts with foresight by anticipating price-design reactions of the incumbent firms (the Nash followers). In the absence of closed-form solutions, we use a sequential iterative procedure to compute a Stackelberg-Nash equilibrium and to establish its uniqueness. The new conjoint model is illustrated under several competitive scenarios and price, design and profit implications are compared to a simple Nash equilibrium model. We find that a Stackelberg leader strategy may not only yield a much higher profit for the new entrant than a Nash strategy, but may also lead to strong profit asymmetries between competitors with still higher profits for the incumbent firms. In other words, the incumbent firms may also benefit strongly from a new entrant choosing a Stackelberg leader strategy.


Conjoint analysis Optimal product design Product competition Game theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albers S, Brockhoff K (1979) A comparison of two approaches to the optimal positioning of a new product in an attribute space. Zeitschrift Opera Res 23: 127–142CrossRefGoogle Scholar
  2. Albritton MD, McMullen PR (2007) Optimal product design using a colony of virtual ants. Eur J Oper Res 176: 498–520CrossRefGoogle Scholar
  3. Alexouda G (2004) An evolutionary algorithm approach to the share of choices problem in the product line design. Computers Oper Res 31: 2215–2229CrossRefGoogle Scholar
  4. Alexouda G, Paparrizos K (2001) A genetic algorithm approach to the product line design problem using the seller’s return criterion: an extensive comparative computational study. Eur J Oper Res 134: 165–178CrossRefGoogle Scholar
  5. Aubin JP (1979) Mathematical methods of game and economic theory. North-Holland, AmsterdamGoogle Scholar
  6. Baier D (1999) Methoden der Conjoint-Analyse in der Marktforschungs- und Marketingpraxis. In: Gaul W, Schader M (eds) Mathematische Methoden der Wirtschaftswissenschaften, Festschrift für Otto Opitz. Physica-Verlag, Heidelberg, pp 197–206Google Scholar
  7. Balakrishnan PV(Sundar), Jacob VS (1996) Genetic algorithms for product design. Manag Sci 42(8): 1105–1117CrossRefGoogle Scholar
  8. Camm JD, Cochran JJ, Curry DJ, Kannan S (2006) Conjoint optimization: an exact branch-and-bound algorithm for the share-of-choice problem. Manag Sci 52: 435–447CrossRefGoogle Scholar
  9. Cattin P, Wittink DR (1982) Commercial use of conjoint analysis: a survey. J Market 46: 44–53CrossRefGoogle Scholar
  10. Chen KD, Hausman WH (2000) Technical note: mathematical properties of the optimal product line selection problem using choice-based conjoint analysis. Manag Sci 46: 327–332CrossRefGoogle Scholar
  11. Choi SC, DeSarbo WS (1993) Game theoretic derivations of competitive strategies in conjoint analysis. Market Lett 4: 337–348CrossRefGoogle Scholar
  12. Choi SC, DeSarbo WS (1994) A conjoint-based product designing procedure incorporating price competition. J Product Innovat Manag 11: 451–459CrossRefGoogle Scholar
  13. Choi SC, DeSarbo WS, Harker PT (1990) Product positioning under price competition. Manag Sci 36: 175–199CrossRefGoogle Scholar
  14. Choi SC, DeSarbo WS, Harker PT (1992) A numerical approach to deriving long-run equilibrium solutions in spatial positioning models. Manag Sci 38: 75–86CrossRefGoogle Scholar
  15. de Palma A, Ginsburgh V, Papageorgiou YY, Thisse JF (1985) The principle of minimum differentiation holds under sufficient heterogeneity. Econometrica 53(4): 767–781CrossRefGoogle Scholar
  16. Dobson G, Kalish S (1988) Positioning and pricing a product line. Market Sci 7(2): 107–125CrossRefGoogle Scholar
  17. Dobson G, Kalish S (1993) Heuristics for pricing and positioning a product-line using conjoint and cost data. Manag Sci 39: 160–175CrossRefGoogle Scholar
  18. Friedman JW (1977) Oligopoly and the Theory of Games. North-Holland, AmsterdamGoogle Scholar
  19. Gabszewicz JJ, Thisse JF (1986) Spatial competition and the location of firms. In: Gabszewicz JJ, Thisse JF, Fujita M, Schweizer U (eds) Fundamentals of pure and applied economics: location theory, vol 5, pp 1–71Google Scholar
  20. Gaul W, Aust E, Baier D (1995) Gewinnorientierte Produktliniengestaltung unter Berücksichtigung des Kundennutzens. Zeitschrift für Betriebswirtschaft 65(8): 835–855Google Scholar
  21. Green PE, Carroll JD, Goldberg SM (1981) A general approach to product design optimization via conjoint analysis. J Market 45(3): 17–37CrossRefGoogle Scholar
  22. Green PE, Krieger AM (1985) Models and heuristics for product line selection. Market Sci 4(1): 1–19CrossRefGoogle Scholar
  23. Green PE, Krieger AM (1987) A simple heuristic for selecting ‘good’ products in conjoint analysis. Appl Manag Sci 5: 131–153Google Scholar
  24. Green PE, Krieger AM (1992) An application of a product positioning model to pharmaceutical products. Market Sci 11(2): 117–132CrossRefGoogle Scholar
  25. Green PE, Krieger AM (1993) Conjoint analysis with product positioning applications. In: Eliashberg J, Lilien GJ (eds) Handbooks in operations research and management science 5, Marketing. Elsevier, Amsterdam, pp 467–516Google Scholar
  26. Green PE, Krieger AM (1997) Using conjoint analysis to view competitive interaction through the customer’s eyes. In: Day GS, Reibstein DJ (eds) Wharton on dynamic competitive strategy. Wiley & Sons, New York, pp 343–368Google Scholar
  27. Green PE, Krieger AM, Wind Y (2004) Buyer choice simulators, optimizers, and dynamic models. In: Wind Y, Green PE (eds) Market research and modeling: progress and prospects. A tribute to Paul E. Green, Springer, New York, pp 169–200Google Scholar
  28. Green PE, Rao VR (1971) Conjoint measurement for quantifying judgmental data. J Market Res 8: 355–363CrossRefGoogle Scholar
  29. Green PE, Srinivasan V (1978) Conjoint analysis in consumer research: issues and outlook. J Consumer Res 5: 103–123CrossRefGoogle Scholar
  30. Green PE, Srinivasan V (1990) Conjoint analysis in marketing: new developments with implications for research and practice. Journal of Marketing 54: 3–19CrossRefGoogle Scholar
  31. Gutsche J (1995) Produktpräferenzanalyse: Ein modelltheoretisches und methodisches Konzept zur Marktsimulation mittels Präferenzerfassungsmodellen. Duncker & Humblot, BerlinGoogle Scholar
  32. Hruschka H, Fettes W, Probst M (2004) An empirical comparison of the validity of a neural net based multinomial logit choice model to alternative model specifications. Eur J Oper Res 159: 166–180CrossRefGoogle Scholar
  33. Johnson RM (1974) Trade-off analysis of consumer values. J Market Res 11: 121–127CrossRefGoogle Scholar
  34. Kaul A, Rao VR (1995) Research for product positioning and design decisions: an integrative review. Int J Res Market 12: 293–320CrossRefGoogle Scholar
  35. Kohli R, Krishnamurti R (1987) A heuristic approach to product design. Manag Sci 33: 1523–1533CrossRefGoogle Scholar
  36. Kohli R, Sukumar R (1990) Heuristics for product-line design using conjoint analysis. Manag Sci 36(12): 1464–1478CrossRefGoogle Scholar
  37. Marks UG (1994) Neuproduktpositionierung in Wettbewerbsmärkten. DUV, WiesbadenGoogle Scholar
  38. Marks UG, Albers S (2001) Experiments in competitive product positioning: actual behavior compared to Nash solutions. Schmalenbach Business Rev 53: 150–174Google Scholar
  39. Nair SK, Thakur LS, Wen KW (1995) Near optimal solutions for product line design and selection: beam search heuristics. Manag Sci 41(5): 767–785CrossRefGoogle Scholar
  40. Sherali HD, Soyster AL, Murphy FH (1983) Stackelberg-Nash-Cournot equilibria: characterizations and computations. Oper Res 31: 253–276CrossRefGoogle Scholar
  41. von Stackelberg H (1934) Marktform und Gleichgewicht. Springer, WienGoogle Scholar
  42. Steiner WJ (1999) Optimale Neuproduktplanung: Entscheidungsmodelle und wettbewerbsorientierte Ansätze. DUV, WiesbadenGoogle Scholar
  43. Steiner WJ, Hruschka H (2000) Conjointanalyse-basierte Produkt(linien)gestaltung unter Berücksichtigung von Konkurrenzreaktionen. OR Spektrum 22: 71–95Google Scholar
  44. Steiner WJ, Hruschka H (2002) Produktliniengestaltung mit Genetischen Algorithmen. Zeitschrift für betriebswirtschaftliche Forschung (zfbf) 54: 575–601Google Scholar
  45. Steiner WJ, Hruschka H (2003) Genetic algorithms for product design: how well do they really work. Int J Market Res, J Market Res Soc 45(2): 229–240Google Scholar
  46. Wittink DR, Cattin P (1989) Commercial use of conjoint analysis: an update. J Market 53: 91–96CrossRefGoogle Scholar
  47. Wittink DR, Vriens M, Burhenne W (1994) Commercial use of conjoint analysis in Europe: results and critical reflections. Int J Res Market 11: 41–52CrossRefGoogle Scholar
  48. Zufryden FS (1977) A conjoint-measurement-based approach for optimal new product design and market segmentation. In: Shocker AD (ed) Analytic approaches to product and market planning, MA: marketing science institute, Cambridge, pp 100–114Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of MarketingClausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations