OR Spectrum

, Volume 31, Issue 2, pp 385–404 | Cite as

A heuristic for the dynamic multi-level capacitated lotsizing problem with linked lotsizes for general product structures

Regular Article

Abstract

In this paper, a new model formulation for the dynamic multi-level capacitated lotsizing problem with linked lotsizes is introduced. Linked lotsizes means that the model formulation correctly accounts for setup carryovers between adjacent periods if production of a product is continued in the next period. This model formulation is a good compromise between the big-bucket and small-bucket model formulation in that it inherits the stability of a big-bucket model and at least partially includes the precise description of setup operations provided by a small-bucket model. A Lagrangean heuristic is developed and tested in a numerical experiment with a set of invented data and a data set taken from industry. The solutions found show a good quality.

Keywords

Lotsizing Multi-level Setup carry-over 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Billington PJ, McClain JO and Thomas LJ (1983). Mathematical programming approaches to capacity-constrained mrp systems: review, formulation and problem reduction. Manage Sci 29(10): 1126–1141 CrossRefGoogle Scholar
  2. Billington PJ, McClain JO and Thomas LJ (1986). Heuristics for multilevel lot-sizing with a bottleneck. Manage Sci 32(8): 989–1006 CrossRefGoogle Scholar
  3. Briskorn D (2006). A note on capacitated lot sizing with setup carry over. IIE Trans 38: 1045–1047 CrossRefGoogle Scholar
  4. Derstroff MC (1995). Mehrstufige Losgrößenplanung mit Kapazitätsbeschränkungen. Produktion und Logistik. Physica-Verlag, Heidelberg Google Scholar
  5. Drexl A and Kimms A (1997). Lot sizing and scheduling - survey and extensions. Eur J Oper Res 99(2): 221–235 CrossRefGoogle Scholar
  6. Haase K (1994). Lotsizing and scheduling for production planning. Springer, Berlin Google Scholar
  7. Haase K (1998) Capacitated lot-sizing with linked production quantities of adjacent periods. In: Drexl A, Kimms A (eds.) Beyond manufacturing resource planning (MRP II) – advanced models and methods for production planning. Springer, Berlin pp 127–146Google Scholar
  8. Jans R, Degraeve Z (2004) Meta-heuristics for dynamic lot sizing: a review and comparison of solution approaches. ERIM Report Series Research in Management pp 1–38Google Scholar
  9. Karimi B, Ghomi SMTF and Wilson JM (2003). The capacitated lot sizing problem: a review of models and algorithms. Omega 31: 365–378 CrossRefGoogle Scholar
  10. Meyr H (1999). Simultane Losgrößen- und Reihenfolgeplanung für kontinuierliche Produktionslnien. Gabler Edition Wissenschaft: Produktion und Logistik. Gabler, Wiesbaden Google Scholar
  11. Salomon M (1991). Deterministic lotsizing for production planning, Band 355 of lecture notes in economics and mathematical systems. Springer, Berlin Google Scholar
  12. Sox CR and Gao Y (1999). The capacitated lot sizing problem with setup carry-over. IIE Trans 31: 173–181 Google Scholar
  13. Sürie C (2005). Time continuity in discrete time models. Springer, Berlin Google Scholar
  14. Staggemeier AT, Clark AR (2001) A survey of lot-sizing and scheduling models. In: 23rd annual symposium of the brazilian operational research society (SOBRAPO). Campos do Jordao SP, Brazil, pp 938–947Google Scholar
  15. Tempelmeier H and Derstroff M (1996). A lagrangean-based heuristic for dynamic multilevel multi-item constrained lotsizing with setup times. Manag Sci 42(5): 739–757 CrossRefGoogle Scholar
  16. Wagner HM and Whitin TM (1958). Dynamic version of the economic lot size model. Manag Sci 5(1): 89–96 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Seminar für Supply Chain Management und ProduktionUniversität zu KölnCologneGermany

Personalised recommendations