OR Spectrum

, Volume 30, Issue 3, pp 579–609 | Cite as

The sequence-dependent assembly line balancing problem

  • Armin Scholl
  • Nils Boysen
  • Malte Fliedner
Regular Article


Assembly line balancing problems (ALBP) arise whenever an assembly line is configured, redesigned or adjusted. An ALBP consists of distributing the total workload for manufacturing any unit of the products to be assembled among the work stations along the line. The sequence-dependent assembly line balancing problem (SDALBP) is an extension of the standard simple assembly line balancing problem (SALBP) which has significant relevance in real-world assembly line settings. SDALBP extends the basic problem by considering sequence-dependent task times. In this paper, we define this new problem, formulate several versions of a mixed-integer program, adapt solution approaches for SALBP to SDALBP, generate test data and perform some preliminary computational experiments. As a main result, we find that applying SALBP-based search procedures is very effective, whereas modelling and solving the problem with MIP standard software is not recommendable.


Assembly line balancing Mass-production Combinatorial optimization Sequencing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baybars I (1986) A survey of exact algorithms for the simple assembly line balancing problem. Manage Sci 32:909–932Google Scholar
  2. Becker C, Scholl A (2006) A survey on problems and methods in generalized assembly line balancing. Eur J Oper Res 168:694–715CrossRefGoogle Scholar
  3. Bockmayr A, Pisaruk N (2001) Solving assembly line balancing problems by combining IP and CP. In: Proceedings of the 6th Annual Workshop of the ERCIM Working Group on Constraints, Prague, Czech RepublicGoogle Scholar
  4. Bowman EH (1960) Assembly-line balancing by linear programming. Oper Res 8:385–389Google Scholar
  5. Boysen N, Fliedner M, Scholl A (2006) A classification of assembly line balancing problems. Eur J Oper Res (in press)Google Scholar
  6. Erel E, Sarin SC (1998) A survey of the assembly line balancing procedures. Prod Plan Control 9:414–434CrossRefGoogle Scholar
  7. Ghosh S, Gagnon RJ (1989) A comprehensive literature review and analysis of the design, balancing and scheduling of assembly systems. Int J Prod Res 27:637–670CrossRefGoogle Scholar
  8. Hackman ST, Magazine MJ, Wee TS (1989) Fast, effective algorithms for simple assembly line balancing problems. Oper Res 37:916–924Google Scholar
  9. Hoffmann TR (1992) EUREKA: a hybrid system for assembly line balancing. Manage Sci 38:39–47Google Scholar
  10. Johnson RV (1988) Optimally balancing large assembly lines with “FABLE”. Manage Sci 34:240–253Google Scholar
  11. Lübke M (2006) Methoden der Präferenzmessung: Formale Analyse, Vergleich und Weiterentwicklung. Diploma Thesis, University of JenaGoogle Scholar
  12. Patterson JH, Albracht JJ (1975) Assembly-line balancing: Zero-one programming with Fibonacci search. Oper Res 23:166–172Google Scholar
  13. Peeters M, Degraeve Z (2006) An linear programming based lower bound for the simple assembly line balancing problem. Eur J Oper Res 168:716–731CrossRefGoogle Scholar
  14. Pinnoi A, Wilhelm WE (1997) A family of hierarchical models for assembly system design. Int J Prod Res 35:253–280CrossRefGoogle Scholar
  15. Rekiek B, Dolgui A, Delchambre A, Bratcu A (2002) State of art of optimization methods for assembly line design. Annu Rev Control 26:163–174CrossRefGoogle Scholar
  16. de Reyck B, Herroelen W (1997) Assembly line balancing by resource-constrained project scheduling—A critical appraisal. Found Comput Control Eng 22:143–167Google Scholar
  17. Saltzman MJ, Baybars I (1987) A two-process implicit enumeration algorithm for the simple assembly line balancing problem. Eur J Oper Res 32:118–129CrossRefGoogle Scholar
  18. Scholl A (1993) Data of assembly line balancing problems. Schriften zur Quantitativen Betriebswirtschaftslehre 16/93, TU DarmstadtGoogle Scholar
  19. Scholl A (1999) Balancing and sequencing assembly lines, 2nd edn. Physica, HeidelbergGoogle Scholar
  20. Scholl A, Becker C (2006) State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. Eur J Oper Res 168:666–693CrossRefGoogle Scholar
  21. Scholl A, Klein R (1997) SALOME: A bidirectional branch and bound procedure for assembly line balancing. Inf J Comput 9:319–334Google Scholar
  22. Scholl A, Klein R (1999) Balancing assembly lines effectively—a computational comparison. Eur J Oper Res 114:50–58CrossRefGoogle Scholar
  23. Scholl A, Voß S (1996) Simple assembly line balancing—Heuristic approaches. J Heuristics 2:217–244CrossRefGoogle Scholar
  24. Sprecher A (1999) A competitive branch-and-bound algorithm for the simple assembly line balancing problem. Int J Prod Res 37:1787–1816CrossRefGoogle Scholar
  25. Talbot FB, Patterson JH, Gehrlein WV (1986) A comparative evaluation of heuristic line balancing techniques. Manage Sci 32:430–454CrossRefGoogle Scholar
  26. Thangavelu SR, Shetty CM (1971) Assembly line balancing by zero-one integer programming. AIIE Trans 3:61–68Google Scholar
  27. Ugurdag HF, Rachamadugu R, Papachristou CA (1997) Designing paced assembly lines with fixed number of stations. Eur J Oper Res 102:488–501CrossRefGoogle Scholar
  28. Wee TS, Magazine MJ (1982) Assembly line balancing as generalized bin packing. Oper Res Lett 1:56–58CrossRefGoogle Scholar
  29. White WW (1961) Comments on a paper by Bowman. Oper Res 9:274–276Google Scholar
  30. Williams HP (1999) Model building in mathematical programming, 4th edn. Wiley, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Fakultät für Wirtschaftswissenschaften, Lehrstuhl für Betriebswirtschaftliche EntscheidungsanalyseFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Fakultät Wirtschafts- und Sozialwissenschaften, Institut für Industrielles ManagementUniversität HamburgHamburgGermany

Personalised recommendations