OR Spectrum

, Volume 29, Issue 1, pp 157–171 | Cite as

Revenue management in make-to-order manufacturing—an application to the iron and steel industry

  • Thomas SpenglerEmail author
  • Stefan Rehkopf
  • Thomas Volling
Regular Article


Order promising in make-to-order manufacturing often has a strong focus on resource oriented factors. Economic aspects are, if at all, only implicitly taken into account. In this paper we develop a revenue management approach to improve order promising for short-term sales in the iron and steel industry as an example of make-to-order manufacturing. We formulate a multi-dimensional knapsack problem to cope with the uniqueness of orders and the corresponding capacity demand. To provide decision support in accepting/rejecting orders, we implement two bid-price calculation schemes. Competitive computational analysis based on real world production data shows the potential benefit of our approach.


Revenue management Make-to-order Bid-price policy 


  1. Bertsimas D, Popescu I (2003) Revenue management in a dynamic network environment. Transp Sci 37:257–277CrossRefGoogle Scholar
  2. Denton B, Gupta D, Jawahir K (2003) Managing increasing product variety at integrated steel mills. Interfaces 33:41–53CrossRefGoogle Scholar
  3. Fleischmann B, Meyr H (2004) Customer orientation in advanced planning systems. In: Dyckhoff H, Lackes R, Reese J (eds) Supply chain management and reverse logistics. Springer, Berlin Heidelberg New York, pp 297–321Google Scholar
  4. Harris F, Pinder J (1995) A revenue management approach to demand management and order booking in assemble-to-order manufacturing. J Oper Manag 13:299–310CrossRefGoogle Scholar
  5. Jacob H (1971) Zur optimalen Planung des Produktionsprogramms bei Einzelfertigung. Z Betriebswirtsch 41:495–516Google Scholar
  6. Kasilingam R (1996) Air cargo revenue management: characteristics and complexities. Eur J Oper Res 96:36–44CrossRefGoogle Scholar
  7. Kleywegt AJ, Papastavrou JD (1998) The dynamic and stochastic knapsack problem. Oper Res 46:17–35Google Scholar
  8. Kleywegt AJ, Papastavrou JD (2001) The dynamic and stochastic knapsack problem with random sized items. Oper Res 49:26–41CrossRefGoogle Scholar
  9. McGill JI, van Ryzin G (1999) Revenue management: research overview and prospects. Transp Sci 33:233–256Google Scholar
  10. Miller BL, Buckman AG (1987) Cost allocation and opportunity costs. Manage Sci 33:626–639Google Scholar
  11. Pak K (2005) Revenue management: new features and models. ERIM Ph.D. Series in Management, 61, RotterdamGoogle Scholar
  12. Papastavrou JD, Rajagopalan S, Kleywegt AJ (1996) The dynamic and stochastic knapsack problem with deadlines. Manag Sci 42:1706–1718Google Scholar
  13. Pibernik R (2005) Advanced available-to-promise. Int J Prod Econ 93:239–252CrossRefGoogle Scholar
  14. Rehkopf S, Spengler T (2005) Revenue management in a make-to-order environment. In: Fleuren H, Den Hertog D, Kort P (eds) Oper Res Proceedings 2004. Springer, Berlin Heidelberg New York, pp 470–478CrossRefGoogle Scholar
  15. Richardson P (1998) Steel price determination in the European community. J Prod Brand Manag 7:62–73CrossRefGoogle Scholar
  16. Rinnooy Kan A, Stougie L, Vercellis C (1993) A class of generalized greedy algorithms for the multi-knapsack problem. Discrete Appl Math 42:279–290CrossRefGoogle Scholar
  17. Spengler T, Rehkopf S (2005) Revenue Management Konzepte zur Entscheidungsunterstützung bei der Annahme von Kundenaufträgen. Z Plan 16:123–146Google Scholar
  18. Talluri K, van Ryzin G (1998) An analysis of bid-price controls for network revenue management. Manag Sci 44:1577–1593CrossRefGoogle Scholar
  19. Talluri K, van Ryzin G (1999) A randomized linear programming method for computing network bid prices. Transp Sci 33:207–216Google Scholar
  20. Tscheulin DK, Lindenmeier J (2003) Yield-Management: ein State-of-the-Art. Z Betriebswirtsch 73:629–662Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Thomas Spengler
    • 1
    Email author
  • Stefan Rehkopf
    • 1
  • Thomas Volling
    • 1
  1. 1.Department of Production and Logistics ManagementTechnical University of BraunschweigBraunschweigGermany

Personalised recommendations