Polymer Bulletin

, Volume 39, Issue 3, pp 325–331 | Cite as

In situ activation of rac-(SBI)Zr(NMe2)2 for the polymerization of propylene

  • Il Kim
  • Richard F. Jordan


Sequential NMR-scale reactions have been carried out in order to generate cationic methylzirconium complexes by the reaction of rac-(SBI)Zr(NMe2)2 (1, SBI = Me2Si(indenyl)2) with methylaluminoxane (MAO) or various noncoordinating anions such as [HNMePh2] [B(C6F5)4], [HNEt2Ph][B(C6F5)4], and [Ph3C][B(C6F5)4]. Reaction of 40 equiv. of MAO with 1 at room temperature was leaded to the formation of stable cationic methylzirconium complexes which polymerize propylene to isotactic polypropylene (iPP). For the activation of 1 with noncoordinating anions 1 was firstly methylated with 4 equiv. of AlMe3 to give rac-(SBI)ZrMe2 (2), and then 1 equiv. of noncoordinating anions was added to the resulting solution mixture containing 2 and various aluminum complexes dissolved in CD2Cl2 solvent. Complex 2 was immediately converted to cationic methylzirconium complex [rac-(SBI)Zr(μ-Me)2AlMe2]+(3), the adduct of the base-free rac-[(SBI)ZrMe]+ cation and AlMe3. Addition of small amount of liquid propylene to the NMR tube containing 3 and other byproducts was leaded to the formation of iPP showing meso pentad value of over 85 %.


Cationic Species Isotactic Polypropylene AlMe3 Zirconocene Aluminum Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. a)
    Jordan RF (1991) Adv Organomet Chem 32: 325;CrossRefGoogle Scholar
  2. 1. b)
    Marks TJ (1992) Acc Chem Res 25: 57;CrossRefGoogle Scholar
  3. 1. c)
    Eisch JJ, Piotrowski AM, Brownstein SK, Gabe EJ, Lee FL (1987) J Am Chem Soc 107: 7219;CrossRefGoogle Scholar
  4. 1. d)
    Hlatky GG, Turner HW, Eckman RR (1989) J Am Chem Soc 111: 2728;CrossRefGoogle Scholar
  5. 1. e)
    Horton AD, Orpen AG (1991) Organometallics 10: 3910;CrossRefGoogle Scholar
  6. 1. f)
    Bochmann M, Lancaster SJ (1993) Organometallics 12: 663;CrossRefGoogle Scholar
  7. 1. g)
    ibid (1993) Angew Chem Int Ed Engl 33: 1637.Google Scholar
  8. 2.
    Ewen JA, Elder MJ (1990) EPA 0426637 to (Fina Technology Inc.).Google Scholar
  9. 3.
    Chien JCW, Tsai WM, Rausch MD (1991) J Am Chem Soc 113: 8570.CrossRefGoogle Scholar
  10. 4.
    Bochmann M, Lancaster SJ (1991) J Organomet Chem C1: 443.Google Scholar
  11. 5. a)
    Ewen JA, Elder MJ (1993) Macromol Chem Macromol Symp66: 179;Google Scholar
  12. 5. b)
    Chien JCW, Tsai WM (1993) ibid. 66: 141;Google Scholar
  13. 5. c)
    Chien JCW, Xu B (1993) Macromol Rapid Commun 14: 109.CrossRefGoogle Scholar
  14. 6. a)
    Jordan RF, Diamond GM (1995) WO 9532979;Google Scholar
  15. 6. b)
    Diamond GM, Rodewald S, Jordan RF (1995) Organometallics 14: 5;CrossRefGoogle Scholar
  16. 6. c)
    Kim I, Jordan RF (1996), Macromolecules 29: 491;Google Scholar
  17. 6. d)
    Diamond GM, Jordan RF, and Petersen JL (1996) Organometallics 15: 4030 and 4045;CrossRefGoogle Scholar
  18. 6. e)
    Christopher JN, Diamond GM, Jordan RF, and Petersen JL Organometallics 15: 4038;Google Scholar
  19. 6. f)
    Diamond GM, Jordan RF, Petersen JL (1996) J Am Chem Soc 118: 8024.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of UlsanUlsanKorea
  2. 2.Department of ChemistryUniversity of IowaIowa CityUSA

Personalised recommendations