Skip to main content
Log in

Morphological and structural properties of isotactic polypropylene filled with nano-zinc oxide as investigated by dynamic rheology, creep and recovery in shear

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Morphological and structural properties of nano-zinc oxide/isotactic polypropylene (nano-ZnO/iPP) composites with different nano-ZnO concentrations before and after compatibilization were investigated by scanning electron microscopy (SEM), dynamic rheology, shear creep and creep-recovery measurements. The complex viscosity and storage modulus of the composite melts first decrease and then increase with increasing nano-ZnO loading. The pseudo-solid-like behavior appearing in high-loaded composites could be attributed to the formation of the filler percolation network resulting from particle–particle interactions. The incorporating of maleic anhydride/styrene-grafted random copolypropylene (MPP) brings about the reduction of the number of big agglomerates of nano-ZnO, followed by the decrease in modulus and viscosity. Large nano-ZnO agglomerates or more complete percolation network formation enhances the creep resistance of iPP. This finding is explained by the existence of long relaxation time in the high-loaded system assigned to the relaxation of the iPP chains attached to the particle surface. Moreover, MPP has a pronounced influence on the shear creep and recovery behavior of the composites. Weighted relaxation spectra calculated from the dynamic frequency sweep together with shear creep and recovery curves quantify these assumptions. Dynamic rheology and shear creep and creep-recovery measurements are sensitive tools to get insights into the dispersion state of nanoparticles in the polymer composites, as well as the interactions (i.e., particle-polymer interaction, particle–particle interaction) in such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Münstedt H, Köppl T, Triebel C (2010) Viscous and elastic properties of poly (methyl methacrylate) melts filled with silica nanoparticles. Polymer 51:185–191

    Article  Google Scholar 

  2. Veg JF, da Silva Y, Vicente-Alique E, Nunez-Ramirez R, Trujillo M, Arnal ML, Dubois P, Martínez-Salazar J (2014) Influence of chain branching and molecular weight on melt rheology and crystallization of polyethylene/carbon nanotube nanocomposites. Macromolecules 47:5668–5681

    Article  Google Scholar 

  3. Liu X, Krückel J, Zheng G, Schubert DW (2014) Electrical conductivity behaviour of sheared poly (methyl methacrylate)/carbon black composites. Compos Sci Technol 100:99–104

    Article  CAS  Google Scholar 

  4. Liu H, Gao J, Huang W, Dai K, Zheng G, Liu C, Shen C, Yan X, Guo J, Guo Z (2016) Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers. Nanoscale 8:12977–12989

    Article  CAS  Google Scholar 

  5. Yan X, Gu J, Zheng G, Guo J, Galaska AM, Yu J, Khan MA, Sun L, Young DP, Zhang Q, Wei S, Guo Z (2016) Lowly loaded carbon nanotubes induced high electrical conductivity and giant magnetoresistance in ethylene/1-octene copolymers. Polymer 103:315–327

    Article  CAS  Google Scholar 

  6. Liu X, Pan Y, Zheng G, Schubert DW (2016) Rheological and electrical behavior of poly (methyl methacrylate)/carbon black composites as investigated by creep recovery in shear. Compos Sci Technol 128:1–7

    Article  CAS  Google Scholar 

  7. Pan Y, Liu X, Kaschta J, Hao X, Liu C, Schubert DW (2017) Viscoelastic and electrical behavior of poly (methyl methacrylate)/carbon black composites prior to and after annealing. Polymer 113:34–38

    Article  CAS  Google Scholar 

  8. Lin Y, Chen H, Chan CM, Wu J (2008) High impact toughness polypropylene/CaCO3 nanocomposites and the toughening mechanism. Macromolecules 41:9204–9213

    Article  CAS  Google Scholar 

  9. Lin Y, Chen H, Chan CM, Wu J (2010) The toughening mechanism of polypropylene/calcium carbonate nanocomposites. Polymer 51:3277–3284

    Article  CAS  Google Scholar 

  10. Triebel C, Katsikis N, Stará H, Münstedt H (2010) Investigations on the quality of dispersion of nanofillers in poly (methyl methacrylate) composites by creep-recovery experiments. J Rheol 54:407–420

    Article  CAS  Google Scholar 

  11. Yu W, Wang J, You W (2016) Structure and linear viscoelasticity of polymer nanocomposites with agglomerated particles. Polymer 98:190–200

    Article  CAS  Google Scholar 

  12. Song Y, Zheng Q (2016) Concepts and conflicts in nanoparticles reinforcement to polymers beyond hydrodynamics. Prog Mater Sci 84:1–58

    Article  CAS  Google Scholar 

  13. Takahashi M, Li L, Masuda T (1989) Nonlinear viscoelasticity of ABS polymers in the molten state. J Rheol 33:709–723

    Article  CAS  Google Scholar 

  14. Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol 30:367–382

    Article  CAS  Google Scholar 

  15. Acha BA, Reboredo MM, Marcovich NE (2007) Creep and dynamic mechanical behavior of PP–jute composites: Effect of the interfacial adhesion. Compos A 38:1507–1516

    Article  Google Scholar 

  16. Tehrani M, Safdari M, Al-Haik MS (2011) Nanocharacterization of creep behavior of multiwall carbon nanotubes/epoxy nanocomposite. Int J Plast 27:887–901

    Article  CAS  Google Scholar 

  17. Yang JL, Zhang Z, Schlarb AK, Friedrich K (2006) On the characterization of tensile creep resistance of polyamide 66 nanocomposites. Part I. Experimental results and general discussions Polymer 47:2791–2801

    CAS  Google Scholar 

  18. Yang JL, Zhang Z, Schlarb AK, Friedrich K (2006) On the characterization of tensile creep resistance of polyamide 66 nanocomposites. Part II: Modeling and prediction of long-term performance. Polymer 47:6745–6758

    Article  CAS  Google Scholar 

  19. Jia Y, Peng K, Gong XL, Zhang Z (2011) Creep and recovery of polypropylene/carbon nanotube composites. Int J Plast 27:1239–1251

    Article  CAS  Google Scholar 

  20. Brambilla L, Consolati G, Gallo R, Quasso F, Severini F (2003) Environmental degradation of isotactic polypropylene plates as studied by positron annihilation lifetime spectroscopy. Polymer 44:1041–1044

    Article  CAS  Google Scholar 

  21. Obadal M, Čermák R, Raab M, Verney V, Commereuc S, Fraïsse F (2005) Structure evolution of α-and β-polypropylenes upon UV irradiation: a multiscale comparison. Polym Degrad Stab 88:532–539

    Article  CAS  Google Scholar 

  22. Xiong M, Gu G, You B, Wu L (2003) Preparation and characterization of poly (styrene butylacrylate) latex/nano-ZnO nanocomposites. J Appl Polym Sci 90:1923–1931

    Article  CAS  Google Scholar 

  23. Tang E, Cheng G, Ma X (2006) Preparation of nano-ZnO/PMMA composite particles via grafting of the copolymer onto the surface of zinc oxide nanoparticles. Powder Technol 161:209–214

    Article  CAS  Google Scholar 

  24. Wang ZL (2008) Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology. ACS Nano 2:1987–1992

    Article  CAS  Google Scholar 

  25. Lai Y, Meng M, Yu Y, Wang X, Ding T (2011) Photoluminescence and photocatalysis of the flower-like nano-ZnO photocatalysts prepared by a facile hydrothermal method with or without ultrasonic assistance. Appl Catal B 105:335–345

    Article  CAS  Google Scholar 

  26. Zhao H, Li RK (2006) A study on the photo-degradation of zinc oxide (ZnO) filled polypropylene nanocomposites. Polymer 47:3207–3217

    Article  CAS  Google Scholar 

  27. Karami Z, Youssefi M, Borhani S (2013) The effects of UV irradiation exposure on the structure and properties of polypropylene/ZnO nanocamposite fibers. Fibers Polym 14:1627–1634

    Article  CAS  Google Scholar 

  28. Liu JR, Liu JX (2019) Characterization of maleic anhydride/styrene melt-grafted random copolypropylene and its impact on crystallization and mechanical properties of isotactic polypropylene. Polym Bull 76:4369–4387

    Article  CAS  Google Scholar 

  29. Durmus A, Kasgoz A, Macosko CW (2007) Linear low density polyethylene (LLDPE)/clay nanocomposites. Part I: Structural characterization and quantifying clay dispersion by melt rheology. Polymer 48:4492–4502

    Article  CAS  Google Scholar 

  30. Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  31. Lim HT, Ahn KH, Hong JS, Hyun K (2013) Nonlinear viscoelasticity of polymer nanocomposites under large amplitude oscillatory shear flow. J Rheol 57:767–789

    Article  CAS  Google Scholar 

  32. Davies AR, Anderssen RS (1997) Sampling localization in determining the relaxation spectrum. J Non-Newtonian Fluid Mech 73:163–179

    Article  CAS  Google Scholar 

  33. Kaschta J, Schwarzl RR (1994) Calculation of discrete retardation spectra from creep data—I. Method Rheol Acta 33:517–529

    Article  CAS  Google Scholar 

  34. Kaschta J, Schwarzl FR (1994) Calculation of discrete retardation spectra from creep data—II. Analysis of measured creep curves. Rheol Acta 33:530–541

    Article  CAS  Google Scholar 

  35. Kraft M, Meissner J, Kaschta J (1999) Linear viscoelastic characterization of polymer melts with long relaxation times. Macromolecules 32:751–757

    Article  CAS  Google Scholar 

  36. Tian J, Yu W, Zhou C (2006) The preparation and rheology characterization of long chain branching polypropylene. Polymer 47:7962–7969

    Article  CAS  Google Scholar 

  37. Zhang Q, Archer LA (2002) Poly (ethylene oxide)/silica nanocomposites: structure and rheology. Langmuir 18:10435–10442

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the project funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingru Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Liang, H. Morphological and structural properties of isotactic polypropylene filled with nano-zinc oxide as investigated by dynamic rheology, creep and recovery in shear. Polym. Bull. 79, 7923–7937 (2022). https://doi.org/10.1007/s00289-021-03890-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03890-9

Keywords

Navigation