Skip to main content

Advertisement

Log in

Original polymer P-DSBT nano-composite with ZnO nanoparticles for gas sensor at room temperature

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Recently, polymer composite material has shown excellent performance in a wide range of technological applications, such as renewable energy, biomedical applications, optoelectronic devices …etc. As the knowledge-base on this emergent material continues to grow, a new kind of hybrid sensors fabricated with semiconducting metal oxides and conducting polymers had been synthesized and had demonstrated high sensing capability for several poisonous gases and chemical warfare agents at room temperature. This research work introduces the synthesis and the characterization of a novel polymer P-DSBT composite consisting of ZnO nanoparticles (P-DSBT/ZNO). The composite films P-DSBT/ZNO are prepared by spin coating technique and then studied using different spectroscopic characterization techniques, i.e., FTIR, XRD, SEM, TEM, AFM and UV–Vis to further investigate on the structure and the morphology of this material. For assessing the P-DSBT/ZNO selectivity, different oxidizing and reducing gases were applied and it was found that the nanocomposite has the best selectivity for methane (CH4). The obtained P-DSBT/ZNO shows a wide sensing range (0–200 ppm) and a very high response magnitude, i.e., relative resistance changes of approximately 40% per 60 ppm of CH4. The key finding of this work is that sensitivity for gas detection is greatly improved by the interaction of ZnO-based hybrid materials at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chunshui L, Wei X, Qiuhong Y, Xiaoru W 2019 Micro and Nano Technologies 275–297

  2. Dixit S, Srivastava Al, Atul SRK, Shukla, (2007) J Appl Phys 102:113–114

    Article  Google Scholar 

  3. Jain S, Karmakar N, Shah A, Shimpi NG (2019) J Mater Sci Eng B 247:114–381

    Article  Google Scholar 

  4. Nehal Salahuddin ME, Atsunori M 2021 . J Micro and Nano Technologies 709–731.

  5. Patil D, Kolhe K, Potdar HS, Patil P (2021) J Appl Phys 110:124501

    Article  Google Scholar 

  6. Ryu H-W, Park B-S, Akbar SA, Lee W-S, Hong K-J, Seo Y-J, Shin D-C, Park J-S, Choi G-P (2003) J Sensors and Actuators B 96:717–722

    Article  CAS  Google Scholar 

  7. Shouli B, Liangyuanb C, Dianqinga Li, Wensheng Y, Pengcheng Y, Zhiyong L, Aifana C (2010) Chung Chiun Liu. J Sensors Actuators B 146:129–137

    Article  Google Scholar 

  8. Akermi M, Sakly N (2013) Rafik Ben Chaabane, Hafedh Ben Ouada. J Mater Sci Semicond Process 16:807–817

    Article  CAS  Google Scholar 

  9. Bai H, Shi G (2007) J Sensors 7:268–307

    Google Scholar 

  10. ElMehdi E, Nejmeddine J, Hafedh BO, Mustapha M. J Appl Phys A. https://doi.org/10.1007/s00339-015-9100-9.

  11. Le T-H, Kim Y, Yoon H (2017) J Polymers 9:150

    Article  Google Scholar 

  12. Gnanaseelan M, Kalita U, Janke A, Pionteck J, Voit B, Singha NK (2020) J Mater Today Commun 22:100728

    Article  CAS  Google Scholar 

  13. Singh SP, Sharma SK, Kim DY (2020) J Solid State Sciences 99:106046

    Article  CAS  Google Scholar 

  14. Saisa, H. Agusnar, Z. Alfian and I. Nainggolan 2020 AIP Conference Proceedings 2267: 020054

  15. Aditee Joshi DK, Aswal SK, Gupta JV, Yakhmi and S. A. Gangal, (2009) Appl Phys Lett 94:103115

    Article  Google Scholar 

  16. Sanchez C, Julia B, Belleville P, Popall M (2005) J Mater Chem 15:3559–3592

    Article  CAS  Google Scholar 

  17. Elashmawi IS, Hakeem NA, Marei LK, Hanna FF (2010) J Physica B: Condensed Matter 405:4163–4169

    Article  CAS  Google Scholar 

  18. Mittal V (2010) J Colloid and Polymer 288:621–630

    Article  CAS  Google Scholar 

  19. Jaballah N, Chemli M, Fave J-L, Majdo M (2015) J Optical Materials 50:144–153

    Article  CAS  Google Scholar 

  20. Mahanthesh B, Animasaun IL, Rahimi-Gorji Mohammad, Alarifi Ibrahim M (2019) Physica A: Statistical Mech Appl 535:122471

    Article  Google Scholar 

  21. Adesanya Samuel O, Onanaye AS, Adeyemi OG, Rahimi-Gorji Mohammad, Alarifi Ibrahim M (2019) Evaluation of heat irreversibility in couple stress falling liquid films along heated inclined substrate. Journal of Cleaner Production 239:117608

    Article  CAS  Google Scholar 

  22. Seikh A, Akinbowale AMH, Taheri MR, Gorji NH, Alharthi IK, Khan AR (2019) Physica Scripta 49(12):125218

    Article  Google Scholar 

  23. Dutta A, Chattopadhyay H, Yasmin H, Rahimi-Gorji M (2019) Comput Methods Programs Biomedicine 180:105010

    Article  Google Scholar 

  24. Abeer Baslem G, Sowmy BJ, Gireesh B.C. Prasannakumara, Rahimi-Gorji Mohammad, Hoang Nguyen Minh (2020) Analysis of thermal behavior of a porous fin fully wetted with nanofluids: convection and radiation. J Mol Liquids 307:112920

    Article  Google Scholar 

  25. Alam MW, Bhattacharyya S, Dey BSK, Hammami F, Rahimi-Gorji M, Biswas R (2020) Int Commun Heat Mass Transfer 112:104455

    Article  Google Scholar 

  26. Ganesh Kumar K, Abeer Baslem BC, Prasannakumara JM, Mohammad Rahimi-Gorji S, Nadeem, (2020). Microsyst Technol. https://doi.org/10.1007/s00542-020-04792-y

    Article  Google Scholar 

  27. Akermi M, Sakly N, Chaabane RB, Ouada HB (2013) J Mater Sci Semiconductor Process 16:807–817

    Article  CAS  Google Scholar 

  28. ElMehdi E, Nejmeddine J, Hafedh BO, Mustapha Mb J Applied Physics A Materials Science & Processing. 00339–015–9100–9.

  29. Sedev R (2011) J Curr Opinion Colloid Interface Sci 16:310–316

    Article  CAS  Google Scholar 

  30. Lee JS, De Angelis RJ (1996) Nanostruct Mater 7:805

    Article  CAS  Google Scholar 

  31. Biju V, Neena S, Vrinda V, Salini SL (2008) J Mater Sci 43:1175

    Article  CAS  Google Scholar 

  32. Mustafa M, Demir M, Koynov K, Akbey Ü, Bubeck C, Park I, I. Lieber wirth, G. Wegner, (2007) J Macromol 40:1089

    Article  Google Scholar 

  33. Chougule MA, Dalavi DS, Sawanta Mali PS, Patil AV, Moholkar GL, Agawane J.H. Kim, Shashwati Sen VB, Patil, (2012) J Measurement 45:1989–1996

    Article  Google Scholar 

  34. Xiong H-M (2010) J Mater Chem 20:4251–4262

    Article  CAS  Google Scholar 

  35. Wood F, Samuel IDW, Webster GR, Burn PL (2001) J Synth Met 119:57

    Article  Google Scholar 

  36. Zou JP, Le Rendu P, Musa I, Yang SH, Dan Y, Ton That C, Nguyen TP (2011) J Thin Solid Films 519:3997–4003

    Article  CAS  Google Scholar 

  37. Haider MS, Muhammad Y, Wan Mahmood MY, Ibtisam YA J Mater Sci: Mater Electron DOI https://doi.org/10.1007/s10854-016-5046-8.

  38. Yang S, Jiang C, Wei S (2007) J Applied Physics Reviews 4:021304

    Article  Google Scholar 

  39. Guo X, Baumgarten M, Müllen K (2013) J Progress in Polymer Science 38:1832–1908

    Article  CAS  Google Scholar 

  40. Pawar SG, Chougule MA, Raut BT, Shashwati Sen VB, Patil, (2012) J Appl Polym Sci 125:1418–1424

    Article  CAS  Google Scholar 

  41. Saaedi A, Shabani P, Yousef R (2019) J Alloy Compd 802:335–344

    Article  CAS  Google Scholar 

  42. Park YBS, Jinc C, Song Y-J, Choi S-W (2019) J Sensors & Actuators: B Chemical 290:467–476

    Article  Google Scholar 

  43. Akermi M, Sakly N, Chaabane RB, Ouada HB (2013) J Mater Sci Semiconductor Process 16:807–817

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Akermi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akermi, M., Jaballah, N., Alajlani, Y. et al. Original polymer P-DSBT nano-composite with ZnO nanoparticles for gas sensor at room temperature. Polym. Bull. 79, 7827–7842 (2022). https://doi.org/10.1007/s00289-021-03872-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03872-x

Keywords

Navigation