Skip to main content

Advertisement

Log in

Preparation, characterization, and functionality of bio-based polyhydroxyalkanoate and renewable natural fiber with waste oyster shell composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This paper reports the fabrication process for a new composite of modified polyhydroxyalkanoate (MPHA), treated renewable pineapple leaf fiber (PLF), and waste oyster shell powder (OSP), with antibacterial, cytocompatibility, and biodegradability properties. PLF and OSP were thermally processed in a solar energy tube as a filler for MPHA-based green composites. The compositions and structures of composites were characterized using Fourier transform-infrared spectroscopy and X-ray diffraction. Tensile and morphological analyses revealed enhanced adhesion and improved compatibility between OSP/PLF and MPHA in composites, compared with polyhydroxyalkanoate (PHA)/OSP/PLF composites. MTT assay and cell adhesion tests revealed that the relative growth rate of human foreskin fibroblasts cells increased with OSP/PLF content, indicating that the composites were not cytotoxic. OSP enhanced the antimicrobial properties of MPHA/OSP/PLF composites. PHA/OSP/PLF composites absorbed more water than MPHA/OSP/PLF composites. The weight loss of composites after being buried in soil compost indicated that both were biodegradable, especially at high levels of OSP/PLF substitution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dubey SP, Thakur VK, Krishnaswamy S, Abhyankar HA, Marchante V, Brighton JL (2017) Progress in environmental-friendly polymer nanocomposite material from PLA: Synthesis, processing and applications. Vacuum 146:655–663

    Article  CAS  Google Scholar 

  2. Samui AB, Kanai T (2019) Polyhydroxyalkanoates based copolymers. Int J Biol Macromol 140:522–537

    Article  CAS  PubMed  Google Scholar 

  3. Musioł M, Sikorska W, Janeczek H, Wałach W, Hercog A, Johnston B, Rydz J (2018) (Bio)degradable polymeric materials for a sustainable future: Part 1. Organic recycling of PLA/PBAT blends in the form of prototype packages with long shelf-life. Waste Manag 77:447–454

    Article  PubMed  CAS  Google Scholar 

  4. Butt FI, Muhammad N, Hamid A, Moniruzzaman M, Sharif F (2018) Recent progress in the utilization of biosynthesized polyhydroxyalkanoates for biomedical applications: review. Int J Biol Macromol 120:1294–1305

    Article  CAS  PubMed  Google Scholar 

  5. Costa SS, Miranda AL, Morais MGD, Costa JAV, Druzian JI (2019) Microalgae as source of polyhydroxyalkanoates (PHAs): a review. Int J Biol Macromol 131:536–547

    Article  CAS  PubMed  Google Scholar 

  6. Sagong HY, Son HF, Choi YS, Lee SY, Kim KJ (2018) Structural insights into polyhydroxyalkanoates biosynthesis. Trends Biochem Sci 43(10):790–805

    Article  CAS  PubMed  Google Scholar 

  7. Obruca S, Sedlacek P, Koller M, Kucera D, Pernicov I (2018) Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: biotechnological consequences and applications. Biotechnol Adv 36(3):856–870

    Article  CAS  PubMed  Google Scholar 

  8. Fabra MJ, López-Rubio A, Lagaron JM (2014) On the use of different hydrocolloids as electrospun adhesive interlayers to enhance the barrier properties of polyhydroxyalkanoates of interest in fully renewable food packaging concepts. Food Hydrocoll 39:77–84

    Article  CAS  Google Scholar 

  9. Pérez-Arauz AO, Aguilar-Rabiela AE, Vargas-Torres A, Rodríguez-Hernández AI, Chavarría-Hernández N, Vergara-Porras B, López-Cuellar MR (2019) Production and characterization of biodegradable films of a novel polyhydroxyalkanoate (PHA) synthesized from peanut oil. Food Packag Food Packag Shelf Life 20:100297

    Article  Google Scholar 

  10. Cherian BM, Leão AL, Souza SFD, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81:720–725

    Article  CAS  Google Scholar 

  11. Todkar SS, Patil SA (2019) Review on mechanical properties evaluation of pineapple leaf fibre (PALF) reinforced polymer composites. Compos B Eng 174:106927

    Article  CAS  Google Scholar 

  12. Izwan S, Sapuan SM (2018) Mechanical properties (impact strength) of pineapple leaf fibre reinforced polypropylene composites with variation of fibre loading and treatment process. Mater Sci Adv Compos Mater 2(4):1–16

    Google Scholar 

  13. Shih YF, Chang WC, Liu WC, Lee CC, Kuan CS, Yu YH (2014) Pineapple leaf/recycled disposable chopstick hybrid fiber-reinforced biodegradable composites. J Taiwan Inst Chem Eng 45(4):2039–2046

    Article  CAS  Google Scholar 

  14. Dutta S, Bhattacharyya D (2013) Bhattacharyya, enzymatic, antimicrobial and toxicity studies of the aqueous extract of Ananas comosus (pineapple) crown leaf. J Ethnopharmacol 150(2):451–457

    Article  CAS  PubMed  Google Scholar 

  15. Yusof Y, Yahya SA, Adam A (2015) Novel technology for sustainable pineapple leaf fibers productions. Procedia CIRP 26:756–760

    Article  Google Scholar 

  16. Glória GO, Teles MCA, Lopes FPD, Vieira CMF, Margem FM, Gomes MDA, Monteiro SN (2017) Tensile strength of polyester composites reinforced with PALF. J Mater Res Technol 6(4):401–405

    Article  CAS  Google Scholar 

  17. Munawar RF, Jamil NH, Shahril MK, Rahim SMSA, Abidin MZZ, Azam MA, Lau KT (2015) Development of green composite: pineapple leaf fibers (PALF) reinforced polylactide (PLA). Appl Mech Mater 761:520–525

    Article  Google Scholar 

  18. Naqi A, Siddique S, Kim HK, Jang JG (2020) Examining the potential of calcined oyster shell waste as additive in high volume slag cement. Constr Build Mater 230:116973

    Article  CAS  Google Scholar 

  19. Chen D, Zhang P, Pan T, Liao Y, Zhao H (2019) Evaluation of the eco-friendly crushed waste oyster shell mortars containing supplementary cementitious materials. J Clean Prod 237:117811

    Article  CAS  Google Scholar 

  20. Xing R, Qin Y, Guan X, Liu S, Yu H, Li P (2013) Comparison of antifungal activities of scallop shell, oyster shell and their pyrolyzed products. Egypt J Aquat Res 39:83–90

    Article  Google Scholar 

  21. Tsou CH, Wu CS, Hung WS, Guzman MRD, Gao C, Wang RY, Chen J, Wan N, Peng YJ, Suen MC (2019) Rendering polypropylene biocomposites antibacterial through modification with oyster shell powder. Polymer 160:265–271

    Article  CAS  Google Scholar 

  22. Asim M, Jawaid M, Abdan K, Ishak MR (2016) Effect of alkali and silane treatments on mechanical and fibre-matrix bonds strength of kenaf and pineapple leaf fibres. J Bionic Eng 13(3):426–435

    Article  Google Scholar 

  23. Khan MD, Ahn JW, Nam G (2018) Environmental benign synthesis, characterization and mechanism studies of green calcium hydroxide nano-plates derived from waste oyster shells. J Environ Manag 223:947–951

    Article  CAS  Google Scholar 

  24. Wu CS (2018) Fabrication, characterization, functionality and application of siliceous sponge spicules-based composites with polyhydroxyalkanoate. Addit Manuf 22:13–20

    CAS  Google Scholar 

  25. Wu CS, Wang SS (2018) Bio-based electrospun nanofiber of polyhydroxyalkanoate modified with Black Soldier Fly’s pupa shell with antibacterial and cytocompatibility properties. ACS Appl Mater Interfaces 10(49):42127–42135

    Article  CAS  PubMed  Google Scholar 

  26. Wu CS (2018) Solar energy tube processing of lemon residues for use as fillers in polyester-based green composites: characterization and biodegradability. Polym Bull 75(12):5745–5761

    Article  CAS  Google Scholar 

  27. Wu CS, Liao HT, Cai YX (2017) Characterisation, biodegradability and application of palm fibre reinforced polyhydroxyalkanoate composites. Polym Degrad Stab 140:55–63

    Article  CAS  Google Scholar 

  28. Rujitanapanich S, Kumpapan P, Wanjanoi P (2014) Synthesis of hydroxyapatite from oyster shell via precipitation. Energy Procedia 56:112–117

    Article  CAS  Google Scholar 

  29. Huh JH, Choi YH, Ramakrishna C, Cheong SH, Ahn JW (2016) Use of calcined oyster shell powders as CO2 adsorbents in algae-containing water. J Korean Ceram Soc 53(4):429–434

    Article  CAS  Google Scholar 

  30. Wu CS, Wu DY, Wang SS (2019) Antibacterial properties of biobased polyester composites achieved through modification with a thermally treated waste scallop shell. ACS Appl Bio Mater 2(5):2262–2270

    Article  CAS  Google Scholar 

  31. Neto ARS, Araujo MAM, Souza FVD, Mattoso LHC, Marconcini JM (2013) Characterization and comparative evaluation of thermal, structural, chemical, mechanical and morphological properties of six pineapple leaf fiber varieties for use in composites. Ind Crops Prod 43:529–537

    Article  CAS  Google Scholar 

  32. Wu CS, Liao HT (2017) Interface design of environmentally friendly carbon nanotube-filled polyester composites: fabrication, characterisation, functionality and application. Express Polym Lett 11(3):187–198

    Article  CAS  Google Scholar 

  33. Chen YC, Lin CL, Li CT, Hwang DF (2015) Structural transformation of oyster, hard clam, and sea urchin shells after calcination and their antibacterial activity against foodborne microorganisms. Fish Sci 81(4):787–794

    Article  CAS  Google Scholar 

  34. Kocaman S, Ahmetli G, Cerit A, Yucel A, Gozukucuk M (2016) Characterization of biocomposites based on mussel shell wastes. Int J Metall Mater Eng 10(4):438–441

    Google Scholar 

  35. Wu CS, Shih WL, Liao HT, Chan WC, Tsou CH (2018) Fabrication, characterization, cytocompatibility, and biological activity of lemon fiber-filled polyester composites. Int J Polym Mater 67(3):151–160

    Article  CAS  Google Scholar 

  36. Wu CS, Shih WL, Liao HT (2017) Fabrication, characterization and functionality of three-dimensional printing strips made from wood flour-filled composites. J Polym Eng 37(7):689–698

    Article  CAS  Google Scholar 

  37. Prado KS, Spinacé MAS (2019) Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses. Int J Biol Macromol 122:410–416

    Article  CAS  PubMed  Google Scholar 

  38. Wu CS (2017) Interface design and reinforced features of arrowroot (Maranta arundinacea) starch/polyester-based membranes: modulation, antioxidant activity, and cytocompatibility. Mater Sci Eng, C 70:54–61

    Article  CAS  Google Scholar 

  39. Asim M, Paridah MT, Saba N, Jawaid M, Alothman OY, Nasir M et al (2018) Thermal, physical properties and flammability of silane treated kenaf/pineapple leaf fibres phenolic hybrid composites. Compos Struct 202:1330–1338

    Article  Google Scholar 

  40. Chen YH, Chen YJ, Chou CY, Wen CC, Cheng CC (2019) UV-protective activities of pineapple leaf extract in zebrafish embryos. Res Chem Intermed 45(1):65–75

    Article  CAS  Google Scholar 

  41. Hijazi MA, Alrasheedi AA, Saeed LM (2016) Effect of pineapple leaves extract (PLE) on lipid profile, glucose, insulin concentration and atherogenic index in hypercholesterolemic rats. Middle East J Appl Sci 6(4):824–832

    Google Scholar 

  42. Hempel N, Trebak M (2017) Crosstalk between calcium and reactive oxygen species signaling in cancer. Cell Calcium 63:70–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Oikawa K, Asada T, Yamamoto K, Wakabayashi H, Sasaki M, Sato M, Matsuda J (2000) Antibacterial activity of calcined shell calcium prepared from wild surf clam. J Health Sci 46:98–103

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks the Ministry of Science and Technology (Taipei City, Taiwan, R.O.C.) for financial support (MOST-108-2622-E-244 -001 -CC3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-San Wu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, CS., Wu, DY. & Wang, SS. Preparation, characterization, and functionality of bio-based polyhydroxyalkanoate and renewable natural fiber with waste oyster shell composites. Polym. Bull. 78, 4817–4834 (2021). https://doi.org/10.1007/s00289-020-03341-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03341-x

Keywords

Navigation