Advertisement

The synergetic effect of antimony (Sb2O3) and melamine cyanurate (MCA) on the flame-retardant behavior of silicon rubber

  • Xuezheng HuangEmail author
  • Zhenjun Tian
  • Dasheng Zhang
  • Qi Jing
  • Jianxi Li
Original Paper
  • 4 Downloads

Abstract

The silicone rubber composites with antimony trioxide (Sb2O3) and melamine cyanurate (MCA) additive were fabricated. The results of scanning electron microscope are shown that the Sb2O3 and MCA are uniformly dispersed into the silicone rubber (SR). It was found that tensile strength and elongation at break were down to 300% and 5.3 MPa with the increase in MCA content. The flammability of the composite was also studied by limiting oxygen index (LOI) and cone calorimetry test. The results indicated that a 31.5% LOI of the composite was achieved, and the heat release rate and total heat release values of the composite with MCA were apparently reduced compared to that without MCA. Meantime, the retention of elongation and tensile strength keeps good behavior. The time to ignition of the composite with MCA is belonged. The results show that the microstructure of combustion residue of MCA additive is continuous and smooth, and it is a good barrier to isolate combustible gas and oxygen. All these test results demonstrated that the synergistic effect of Sb2O3 and MCA successfully enhanced the flame-retardant properties of the SR composite.

Keywords

Silicone rubber MCA additive Sb2O3 Flammability Synergistic effect 

Notes

Acknowledgements

This work was supported by Controllable preparation of graphene hydrogel loaded nano-zero-valent iron and removal of chlorophenol pollutants from groundwater [NSFC (2019) No. 27].

References

  1. 1.
    Li L, Qian Y, Jiao CM (2013) Synergistic flame retardant effect of melamine in ethylene–vinyl acetate/layered double hydroxides composites. J Therm Anal Calorim 114:45–55CrossRefGoogle Scholar
  2. 2.
    Wang X, Dou W (2012) Preparation of graphite oxide (GO) and the thermal stability of silicone rubber/GO nanocomposites. Thermochim Acta 529:25–28CrossRefGoogle Scholar
  3. 3.
    Chai H, Tang X, Ni M et al (2015) Preparation and properties of flexible flame-retardant neutron shielding material based on methyl vinyl silicone rubber. J Nucl Mater 464:210–215CrossRefGoogle Scholar
  4. 4.
    Fang S, Hu Y, Song L et al (2008) Mechanical properties, fire performance and thermal stability of magnesium hydroxide sulfate hydrate whiskers flame retardant silicone rubber. J Mater Sci 43:1057–1062CrossRefGoogle Scholar
  5. 5.
    Kemaloglu S, Ozkoc G, Aytac A (2010) Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites. Thermochim Acta 499:40–47CrossRefGoogle Scholar
  6. 6.
    Seyedmehdi SA, Zhang H, Zhu J (2016) Influence of production method, silicone type and thickness on silicon rubber superhydrophobic coatings. Prog Org Coat 90:291–295CrossRefGoogle Scholar
  7. 7.
    Hu Y, Mei R, An Z et al (2013) Silicon rubber/hollow glass microsphere composites: influence of broken hollow glass microsphere on mechanical and thermal insulation property. Compos Sci Technol 79:64–69CrossRefGoogle Scholar
  8. 8.
    Ota K, Hirai K (2000) Flame-retardant silicon rubber composition for coating electrical wire and cable. US patent 6,011,105[P]. 2000-1-4Google Scholar
  9. 9.
    Zhou Y, Liu R, Hou F et al (2013) Morphology of electrical trees in silicon rubber. J Electrost 71:440–448CrossRefGoogle Scholar
  10. 10.
    Nie Q, Zhou YX, Chen ZZ et al (2009) Influence of frequency on tree initiation voltage and electrical tree shape in silicone rubber. High Volt Eng 1:141–145Google Scholar
  11. 11.
    Irvine DJ, McCluskey JA, Robinson IM (2000) Fire hazards and some common polymers. Polym Degrad Stab 67:383–396CrossRefGoogle Scholar
  12. 12.
    Lu SY, Hamerton I (2002) Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci 27:1661–1712CrossRefGoogle Scholar
  13. 13.
    Dittrich B, Wartig KA, Mülhaupt R et al (2014) Flame-retardancy properties of intumescent ammonium poly (phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polymers 6:2875–2895CrossRefGoogle Scholar
  14. 14.
    Zhang W, Li X, Shan Z et al (2019) Surface modification of magnesium hydroxide by wet process and effect on the thermal stability of silicone rubber. Appl Surf Sci 465:740–746CrossRefGoogle Scholar
  15. 15.
    Savas LA, Deniz TK, Tayfun U et al (2017) Effect of microcapsulated red phosphorus on flame retardant, thermal and mechanical properties of thermoplastic polyurethane composites filled with huntite & hydromagnesite mineral. Polym Degrad Stab 135:121–129CrossRefGoogle Scholar
  16. 16.
    Yang JC, Cao ZJ, Wang YZ et al (2015) Ammonium polyphosphate-based nanocoating for melamine foam towards high flame retardancy and anti-shrinkage in fire. Polymer 66:86–93CrossRefGoogle Scholar
  17. 17.
    Müller P, Schartel B (2016) Melamine poly (metal phosphates) as flame retardant in epoxy resin: performance, modes of action, and synergy. J Appl Polym Sci 133(24):43549(1–14)CrossRefGoogle Scholar
  18. 18.
    Ionescu M, Mihalache I, Zugravu V et al (1994) Inherently flame retardant rigid polyurethane foams based on new triazinic polyether polyols. Cell Polym 13:57–68Google Scholar
  19. 19.
    Weil E, McSwigan B (1994) Melamine phosphates and pyrophosphates in flame-retardant coatings: old products with new potential. J Coat Technol 66:75–82Google Scholar
  20. 20.
    Sha K, Hu YL, Wang YH et al (2014) Preparation of flame retardant polyamide 6/melamine cyanurate via in situ polymerisation and its characterisation. Mater Res Innovations 18:S4-843–S4-847CrossRefGoogle Scholar
  21. 21.
    Huang H, Zhang K, Jiang J et al (2017) Highly dispersed melamine cyanurate flame-retardant epoxy resin composites. Polym Int 66:85–91CrossRefGoogle Scholar
  22. 22.
    Zhao M, Yi D, Camino G et al (2017) Interdigitated crystalline MMT–MCA in polyamide 6. RSC Adv 7:861–869CrossRefGoogle Scholar
  23. 23.
    Hou W, Fu Y, Zeng C et al (2018) Enhancement of flame retardancy and mechanical properties of polyamide 6 by incorporating melamine cyanurate combined with attapulgite. J Appl Polym Sci 137(2):47298(1–10)Google Scholar
  24. 24.
    Si M, Feng J, Hao J et al (2014) Synergistic flame retardant effects and mechanisms of nano-Sb2O3 in combination with aluminum phosphinate in poly (ethylene terephthalate). Polym Degrad Stab 100:70–78CrossRefGoogle Scholar
  25. 25.
    Niu L, Xu J, Kang C et al (2019) Influence of nano-Sb2O3 particles on mechanical properties of PBT flame retardant composites. Ferroelectrics 546:148–157CrossRefGoogle Scholar
  26. 26.
    Yang D, Zhang W, Jiang B (2013) Ceramization and oxidation behaviors of silicone rubber ablative composite under oxyacetylene flame. Ceram Int 39:1575–1581CrossRefGoogle Scholar
  27. 27.
    Fang W, Lai X, Li H et al (2014) Effect of urea-containing anti-tracking additive on the tracking and erosion resistance of addition-cure liquid silicone rubber. Polym Test 37:19–27CrossRefGoogle Scholar
  28. 28.
    Tao W, Li J (2018) Melamine cyanurate tailored by base and its multi effects on flame retardancy of polyamide 6. Appl Surf Sci 456:751–762CrossRefGoogle Scholar
  29. 29.
    Liu Y, Wang Q (2009) The investigation on the flame retardancy mechanism of nitrogen flame retardant melamine cyanurate in polyamide 6. J Polym Res 16:583–589CrossRefGoogle Scholar
  30. 30.
    Dante RC, Martín-Ramos P et al (2013) Synthesis of crumpled nanosheets of polymeric carbon nitride from melamine cyanurate. J Solid State Chem 201:153–163CrossRefGoogle Scholar
  31. 31.
    Yang W, Yang F, Yang R et al (2016) Ammonium polyphosphate/melamine cyanurate synergetic flame retardant system for use in papermaking. BioResources 11:2308–2318Google Scholar
  32. 32.
    Kiliaris P, Papaspyrides CD, Pfaendner R (2008) Polyamide 6 filled with melamine cyanurate and layered silicates: evaluation of flame retardancy and physical properties. Macromol Mater Eng 293:740–751CrossRefGoogle Scholar
  33. 33.
    Imiela M, Anyszka R, Bieliński DM et al (2019) Synergistic effect of mica, glass frit, and melamine cyanurate for improving fire resistance of styrene-butadiene rubber composites destined for ceramizable coatings. Coatings 9:170CrossRefGoogle Scholar
  34. 34.
    Januszewski R, Dutkiewicz M, Maciejewski H et al (2018) Synthesis and characterization of phosphorus-containing, silicone rubber based flame retardant coatings. React Funct Polym 123:1–9CrossRefGoogle Scholar
  35. 35.
    Chen Y, Wang Q, Yan W et al (2006) Preparation of flame retardant polyamide 6 composite with melamine cyanurate nanoparticles in situ formed in extrusion process. Polym Degrad Stab 91:2632–2643CrossRefGoogle Scholar
  36. 36.
    Ma T, Guo C (2017) Synergistic effect between melamine cyanurate and a novel flame retardant curing agent containing a caged bicyclic phosphate on flame retardancy and thermal behavior of epoxy resins. J Anal Appl Pyrolysis 124:239–246CrossRefGoogle Scholar
  37. 37.
    Braun U, Schartel B, Fichera MA et al (2007) Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6, 6. Polym Degrad Stab 92:1528–1545CrossRefGoogle Scholar
  38. 38.
    Qiu S, Ma C, Wang X et al (2018) Melamine-containing polyphosphazene wrapped ammonium polyphosphate: a novel multifunctional organic–inorganic hybrid flame retardant. J Hazard Mater 344:839–848PubMedCrossRefGoogle Scholar
  39. 39.
    Sacristán M, Hull TR, Stec AA et al (2010) Cone calorimetry studies of fire retardant soybean-oil-based copolymers containing silicon or boron: comparison of additive and reactive approaches. Polym Degrad Stab 95:1269–1274CrossRefGoogle Scholar
  40. 40.
    Gilman JW, Jackson CL, Morgan AB et al (2000) Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem Mater 12:1866–1873CrossRefGoogle Scholar
  41. 41.
    Costa FR, Wagenknecht U, Heinrich G (2007) LDPE/Mg–Al layered double hydroxide nanocomposite: thermal and flammability properties. Polym Degrad Stab 92:1813–1823CrossRefGoogle Scholar
  42. 42.
    Chen X, Song W, Liu J et al (2015) Synergistic flame-retardant effects between aluminum hypophosphite and expandable graphite in silicone rubber composites. J Therm Anal Calorim 120:1819–1826CrossRefGoogle Scholar
  43. 43.
    Schartel B, Hull TR (2007) Development of fire-retarded materials—interpretation of cone calorimeter data. Fire Mater 31:327–354CrossRefGoogle Scholar
  44. 44.
    Jiao C, Chen X (2010) Flammability and thermal degradation of intumescent flame-retardant polypropylene composites. Polym Eng Sci 50:767–772CrossRefGoogle Scholar
  45. 45.
    Tang S, Qian L, Qiu Y et al (2014) The effect of morphology on the flame-retardant behaviors of melamine cyanurate in PA6 composites. J Appl Polym Sci 131:40558Google Scholar
  46. 46.
    Zhang K, Wu K, Zhang YK et al (2013) Flammability characteristics and performance of flame-retarded epoxy composite based on melamine cyanurate and ammonium polyphosphate. Polym Plast Technol Eng 52:525–532CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Civil EngineeringNanyang Institute of TechnologyNanyangPeople’s Republic of China
  2. 2.School of Architecture and Civil EngineeringBeijing University of TechnologyBeijingPeople’s Republic of China
  3. 3.CGN DELTA (Jiangsu) Plastic & Chemical Co., LtdSuzhouPeople’s Republic of China

Personalised recommendations