Developed methods for the preparation of electrospun nanofibers containing plant-derived oil or essential oil: a systematic review

  • Mahmoud OsanlooEmail author
  • Javad Arish
  • Hassan Sereshti
Review Paper


Recently, natural health products as alternatives for synthetic/chemical substances have become a growing area of interest. Plant-derived essential oils or oils (E/Os) with a wide range of bioactivities such as anticancer, antibacterial, antifungal, and antioxidant activities are widely used among natural materials. Furthermore, nanofibers (NFs) with distinct properties, including large surface area, many available ingredients for preparation, and various preparation methods have attracted much attention. The present systematic review is an attempt to collect and document the recent studies from 01.01.2013 to 31.12.2018, indicating the loading of E/O in electrospun NFs. First, a summary of the electrospinning process and applications of electrospun NFs in medicine were given. Then, the three manners, which have been introduced for preparing E/O-loaded NFs so far, were described. Moreover, the main techniques for characterization of such NFs, e.g., evaluation of size and morphology, determination of the loaded amount of E/O in NFs, and investigating their release behavior, were explained.

Graphic abstract


Essential oil Electrospun Nanofibers Electrospinning A systematic review 



Fasa University of Medical Sciences (Grant No. 97269) supported this study.

Compliance with ethical standards

Conflict of interest

There is no conflict of interest to the authors.


  1. 1.
    Definition of Nanotechnology (2019) Iranian nano organization.
  2. 2.
    Shirkhanloo H, Osanloo M, Ghazaghi M, Hassani H (2017) Validation of a new and cost-effective method for mercury vapor removal based on silver nanoparticles coating on micro glassy balls. Atmos Pollut Res 8(2):359–365CrossRefGoogle Scholar
  3. 3.
    Osanloo M, Amini SM, Sedaghat MM, Amani A (2019) Larvicidal activity of chemically synthesized silver nanoparticles against Anopheles stephensi. J Pharm Negat Res 10(1):69–72CrossRefGoogle Scholar
  4. 4.
    Osanloo M, Sereshti H, Sedaghat MM, Amani A (2018) Nanoemulsion of Dill essential oil as a green and potent larvicide against Anopheles stephensi. Environ Sci Pollut Res Int 25(7):6466–6473PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Osanloo M, Sedaghat MM, Sereshti H, Rahmani M, Saeedi Landi F, Amani A (2019) Chitosan nanocapsules of tarragon essential oil with low cytotoxicity and long-lasting activity as a green nano-larvicide. J Nanostruct 9(4):723–735Google Scholar
  6. 6.
    Osanloo M, Sedaghat MM, Sereshti H, Amani A (2019) Nano-encapsulated tarragon (Artemisia dracunculus) essential oil as a sustained release nano-larvicide. J Contemp Med Sci 5(2):82–89Google Scholar
  7. 7.
    Osanloo M, Assadpour S, Mehravaran A, Abastabar M, Akhtari J (2018) Niosome-loaded antifungal drugs as an effective nanocarrier system: a mini review. Curr Med Mycol 4(4):31–36PubMedPubMedCentralGoogle Scholar
  8. 8.
    Firoozi S, Amani A, Derakhshan MA, Ghanbari H (2016) Artificial neural networks modeling of electrospun polyurethane nanofibers from chloroform/methanol solution. J Nano Res 41:18–30CrossRefGoogle Scholar
  9. 9.
    Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170CrossRefGoogle Scholar
  10. 10.
    Peng Y, Dong Y, Fan H, Chen P, Li Z, Jiang Q (2013) Preparation of polysulfone membranes via vapor-induced phase separation and simulation of direct-contact membrane distillation by measuring hydrophobic layer thickness. Desalination 316:53–66CrossRefGoogle Scholar
  11. 11.
    Yongquan D, Ming W, Lin C, Mingjun L (2012) Preparation, characterization of P (VDF-HFP)/[bmim] BF4 ionic liquids hybrid membranes and their pervaporation performance for ethyl acetate recovery from water. Desalination 295:53–60CrossRefGoogle Scholar
  12. 12.
    Zhang Y, Feng Y, Huang Z, Ramakrishna S, Lim C (2006) Fabrication of porous electrospun nanofibres. Nanotechnology 17(3):901–908CrossRefGoogle Scholar
  13. 13.
    Sahay R, Kumar PS, Sridhar R, Sundaramurthy J, Venugopal J, Mhaisalkar SG, Ramakrishna S (2012) Electrospun composite nanofibers and their multifaceted applications. J Mater Chem 22(26):12953–12971CrossRefGoogle Scholar
  14. 14.
    Kumar PS, Sundaramurthy J, Sundarrajan S, Babu VJ, Singh G, Allakhverdiev SI, Ramakrishna S (2014) Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation. Energy Environ Sci 7(10):3192–3222CrossRefGoogle Scholar
  15. 15.
    Li L, Peng S, Lee JKY, Ji D, Srinivasan M, Ramakrishna S (2017) Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy 39:111–139CrossRefGoogle Scholar
  16. 16.
    Zhang W, Ronca S, Mele E (2017) Electrospun nanofibres containing antimicrobial plant extracts. Nanomaterials 7(2):42PubMedCentralCrossRefGoogle Scholar
  17. 17.
    Almetwally AA, El-Sakhawy M, Elshakankery M, Kasem M (2017) Technology of nano-fibers: production techniques and properties-critical review. J Text Assoc 78:5–14Google Scholar
  18. 18.
    Xie Y, Kocaefe D, Chen C, Kocaefe Y (2016) Review of research on template methods in preparation of nanomaterials. J Nanomater 2016Google Scholar
  19. 19.
    Garg K, Bowlin GL (2011) Electrospinning jets and nanofibrous structures. Biomicrofluidics 5(1):13403PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49(10):2387–2425CrossRefGoogle Scholar
  21. 21.
    Quirós J, Boltes K, Rosal R (2016) Bioactive applications for electrospun fibers. Polym Rev 56(4):631–667CrossRefGoogle Scholar
  22. 22.
    Ulubayram K, Calamak S, Shahbazi R, Eroglu I (2015) Nanofibers based antibacterial drug design, delivery and applications. Curr Pharm Des 21(15):1930–1943PubMedCrossRefGoogle Scholar
  23. 23.
    Casanova MR, Reis RL, Martins A, Neves NMJOTEN, Scaffolding-Related Developments, Translation (2018) The use of electrospinning technique on osteochondral tissue engineering. Adv Exp Med Biol 1058:247–263PubMedCrossRefGoogle Scholar
  24. 24.
    Pelipenko J, Kristl J, Janković B, Baumgartner S, Kocbek P (2013) The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers. Int J Pharm 456(1):125–134PubMedCrossRefGoogle Scholar
  25. 25.
    Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13):1989–2006PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL (2007) Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 59(14):1413–1433PubMedCrossRefGoogle Scholar
  27. 27.
    Megelski S, Stephens JS, Chase DB, Rabolt JF (2002) Micro-and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 35(22):8456–8466CrossRefGoogle Scholar
  28. 28.
    Matabola K, Moutloali R (2013) The influence of electrospinning parameters on the morphology and diameter of poly (vinyledene fluoride) nanofibers-effect of sodium chloride. J Mater Sci 48(16):5475–5482CrossRefGoogle Scholar
  29. 29.
    Wang T, Kumar S (2006) Electrospinning of polyacrylonitrile nanofibers. J Appl Polym Sci 102(2):1023–1029CrossRefGoogle Scholar
  30. 30.
    Bae H-S, Haider A, Selim KK, Kang D-Y, Kim E-J, Kang I-K (2013) Fabrication of highly porous PMMA electrospun fibers and their application in the removal of phenol and iodine. J Polym Res 20(7):158CrossRefGoogle Scholar
  31. 31.
    Pillay V, Dott C, Choonara YE, Tyagi C, Tomar L, Kumar P, du Toit LC, Ndesendo VM (2013) A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J Nanomater 2013Google Scholar
  32. 32.
    Angammana CJ, Jayaram SH (2011) Analysis of the effects of solution conductivity on electrospinning process and fiber morphology. IEEE Trans Ind Appl 47(3):1109–1117CrossRefGoogle Scholar
  33. 33.
    Lannutti J, Reneker D, Ma T, Tomasko D, Farson D (2007) Electrospinning for tissue engineering scaffolds. Mater Sci Eng C Mater Biol Appl 27(3):504–509CrossRefGoogle Scholar
  34. 34.
    Kenawy E-R, Bowlin GL, Mansfield K, Layman J, Simpson DG, Sanders EH, Wnek GE (2002) Release of tetracycline hydrochloride from electrospun poly (ethylene-co-vinylacetate), poly (lactic acid), and a blend. J Control Release 81(1–2):57–64CrossRefGoogle Scholar
  35. 35.
    Lin S, Wang R-Z, Yi Y, Wang Z, Hao L-M, Wu J-H, Hu G-H, He H (2014) Facile and green fabrication of electrospun poly (vinyl alcohol) nanofibrous mats doped with narrowly dispersed silver nanoparticles. Int J Nanomed 9:3937–3947CrossRefGoogle Scholar
  36. 36.
    Chung HJ, Park TG (2007) Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering. Adv Drug Deliv Rev 59(4–5):249–262PubMedCrossRefGoogle Scholar
  37. 37.
    Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res A 60(4):613–621CrossRefGoogle Scholar
  38. 38.
    Martins A, Pinho ED, Faria S, Pashkuleva I, Marques AP, Reis RL, Neves NM (2009) Surface modification of electrospun polycaprolactone nanofiber meshes by plasma treatment to enhance biological performance. small 5(10):1195–1206PubMedGoogle Scholar
  39. 39.
    Smith L, Ma P (2004) Nano-fibrous scaffolds for tissue engineering. Colloids Surf B Biointerfaces 39(3):125–131PubMedCrossRefGoogle Scholar
  40. 40.
    Haider A, Haider S, Kang I-K (2018) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem 11(8):1165–1188CrossRefGoogle Scholar
  41. 41.
    Araujo J, Martins A, Leonor I, Pinho ED, Reis R, Neves N (2008) Surface controlled biomimetic coating of polycaprolactone nanofiber meshes to be used as bone extracellular matrix analogues. J Biomater Sci Polym Ed 19(10):1261–1278PubMedCrossRefGoogle Scholar
  42. 42.
    da Silva MA, Crawford A, Mundy J, Martins A, Araújo JV, Hatton PV, Reis RL, Neves NM (2008) Evaluation of extracellular matrix formation in polycaprolactone and starch-compounded polycaprolactone nanofiber meshes when seeded with bovine articular chondrocytes. Tissue Eng Part A 15(2):377–385CrossRefGoogle Scholar
  43. 43.
    Rezvani Z, Venugopal JR, Urbanska AM, Mills DK, Ramakrishna S, Mozafari M (2016) A bird’s eye view on the use of electrospun nanofibrous scaffolds for bone tissue engineering: current state-of-the-art, emerging directions and future trends. Nanomedicine 12(7):2181–2200PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Gallant-Behm CL, Yin HQ, Liu S, Heggers JP, Langford RE, Olson ME, Hart DA, Burrell RE (2005) Comparison of in vitro disc diffusion and time kill-kinetic assays for the evaluation of antimicrobial wound dressing efficacy. Wound Repair Regen 13(4):412–421PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Jones SA, Bowler PG, Walker M, Parsons D (2004) Controlling wound bioburden with a novel silver-containing Hydrofiber® dressing. Wound Repair Regen 12(3):288–294PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Chen J-P, Chang G-Y, Chen J-K (2008) Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids Surf A Physicochem Eng Asp 313:183–188CrossRefGoogle Scholar
  47. 47.
    Khil MS, Cha DI, Kim HY, Kim IS, Bhattarai N (2003) Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res B Appl Biomater 67(2):675–679PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Sohrabi A, Shaibani P, Etayash H, Kaur K, Thundat T (2013) Sustained drug release and antibacterial activity of ampicillin incorporated poly (methyl methacrylate)–nylon6 core/shell nanofibers. Polymer 54(11):2699–2705CrossRefGoogle Scholar
  49. 49.
    Gao Y, Bach Truong Y, Zhu Y, Louis Kyratzis I (2014) Electrospun antibacterial nanofibers: production, activity, and in vivo applications. J Appl Polym 131(18)CrossRefGoogle Scholar
  50. 50.
    Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils–a review. Food Chem Toxicol 46(2):446–475PubMedCrossRefGoogle Scholar
  51. 51.
    Osanloo M, Amani A, Sereshti H, Shayeghi M, Sedaghat MM (2017) Extraction and chemical composition essential oil of Kelussia odoratissima and comparison its larvicidal activity with Z-ligustilide (major constituent) against Anopheles stephensi. J Entomol Zool Stud 5(4):611–615Google Scholar
  52. 52.
    Meier MA, Metzger JO, Schubert US (2007) Plant oil renewable resources as green alternatives in polymer science. Chem Soc Rev 36(11):1788–1802PubMedCrossRefGoogle Scholar
  53. 53.
    Kalemba D, Kunicka A (2003) Antibacterial and antifungal properties of essential oils. Curr Med Chem 10(10):813–829PubMedCrossRefGoogle Scholar
  54. 54.
    Juteau F, Masotti V, Bessiere JM, Dherbomez M, Viano J (2002) Antibacterial and antioxidant activities of Artemisia annua essential oil. Fitoterapia 73(6):532–535PubMedCrossRefGoogle Scholar
  55. 55.
    Osanloo M, Sedaghat MM, Esmaeili F, Amani A (2018) Larvicidal activity of essential oil of syzygium aromaticum (Clove) in com-parison with its major constituent, eugenol, against Anopheles stephensi. J Arthropod Borne Dis 12(4):361–369PubMedPubMedCentralGoogle Scholar
  56. 56.
    Guesmi F, Prasad S, Tyagi AK, Landoulsi A (2017) Antinflammatory and anticancer effects of terpenes from oily fractions of Teucruim alopecurus, blocker of IkappaBalpha kinase, through downregulation of NF-kappaB activation, potentiation of apoptosis and suppression of NF-kappaB-regulated gene expression. Biomed Pharmacother 95:1876–1885PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Osanloo M, Amani A, Sereshti H, Abai MR, Esmaeili F, Sedaghat MM (2017) Preparation and optimization nanoemulsion of Tarragon (Artemisia dracunculus) essential oil as effective herbal larvicide against Anopheles stephensi. Ind Crops Prod 109:214–219CrossRefGoogle Scholar
  58. 58.
    Jamil B, Abbasi R, Abbasi S, Imran M, Khan SU, Ihsan A, Javed S, Bokhari H (2016) Encapsulation of cardamom essential oil in chitosan nano-composites: in vitro efficacy on antibiotic-resistant bacterial pathogens and cytotoxicity studies. Front Microbiol 7:1580PubMedPubMedCentralGoogle Scholar
  59. 59.
    Khan R, Xiangyang S, Ahmad A, Mo X (2018) Electrospinning of crude plant extracts for antibacterial and wound healing applications: a review. SM J Biomed Eng 4(1):1–8Google Scholar
  60. 60.
    Ardekani NT, Khorram M, Zomorodian K, Yazdanpanah S, Veisi H, Veisi H (2018) Evaluation of electrospun poly (vinyl alcohol)-based nanofiber mats incorporated with Zataria multiflora essential oil as potential wound dressing. Int J Biol Macromol 125:743–750PubMedCrossRefGoogle Scholar
  61. 61.
    Sirc J, Kubinova S, Hobzova R, Stranska D, Kozlik P, Bosakova Z, Marekova D, Holan V, Sykova E, Michalek J (2012) Controlled gentamicin release from multi-layered electrospun nanofibrous structures of various thicknesses. Int J Nanomed 7:5315–5325CrossRefGoogle Scholar
  62. 62.
    Zhang C, Zhang H (2018) Formation and stability of core-shell nanofibers by electrospinning of gel-like corn oil-in-water emulsions stabilized by gelatin. J Agric Food Chem 66(44):11681–11690PubMedCrossRefGoogle Scholar
  63. 63.
    Zamani R, Pilehvar-Soltanahmadi Y, Alizadeh E, Zarghami N (2018) Macrophage repolarization using emu oil-based electrospun nanofibers: possible application in regenerative medicine. Artif Cells Nanomed Biotechnol 46(6):1258–1265PubMedCrossRefGoogle Scholar
  64. 64.
    Lin L, Mao X, Sun Y, Rajivgandhi G, Cui H (2018) Antibacterial properties of nanofibers containing chrysanthemum essential oil and their application as beef packaging. Int J Food Microbiol 292:21–30PubMedCrossRefGoogle Scholar
  65. 65.
    Jalilzadeh-Tabrizi S, Pilehvar-Soltanahmadi Y, Alizadeh E, Alipour S, Dadashpour M, Nejati-Koshki K, Zarghami N (2018) A biomimetic emu oil-blended electrospun nanofibrous mat for maintaining stemness of adipose tissue-derived stem cells. Biopreserv Biobank 16(2):66–76PubMedCrossRefGoogle Scholar
  66. 66.
    Dadras Chomachayi M, Solouk A, Akbari S, Sadeghi D, Mirahmadi F, Mirzadeh H (2018) Electrospun nanofibers comprising of silk fibroin/gelatin for drug delivery applications: thyme essential oil and doxycycline monohydrate release study. J Biomed Mater Res A 106(4):1092–1103PubMedCrossRefGoogle Scholar
  67. 67.
    Chao CY, Mani MP, Jaganathan SK (2018) Engineering electrospun multicomponent polyurethane scaffolding platform comprising grapeseed oil and honey/propolis for bone tissue regeneration. PLoS ONE 13(10):1–17CrossRefGoogle Scholar
  68. 68.
    Ayyar M, Mani MP, Jaganathan SK, Rathanasamy R (2018) Preparation, characterization and blood compatibility assessment of a novel electrospun nanocomposite comprising polyurethane and ayurvedic-indhulekha oil for tissue engineering applications. Biomed Tech Berl 63(3):245–253PubMedCrossRefGoogle Scholar
  69. 69.
    Pilehvar-Soltanahmadi Y, Nouri M, Martino MM, Fattahi A, Alizadeh E, Darabi M, Rahmati-Yamchi M, Zarghami N (2017) Cytoprotection, proliferation and epidermal differentiation of adipose tissue-derived stem cells on emu oil based electrospun nanofibrous mat. Exp Cell Res 357(2):192–201PubMedCrossRefGoogle Scholar
  70. 70.
    Nejati-Koshki K, Pilehvar-Soltanahmadi Y, Alizadeh E, Ebrahimi-Kalan A, Mortazavi Y, Zarghami N (2017) Development of Emu oil-loaded PCL/collagen bioactive nanofibers for proliferation and stemness preservation of human adipose-derived stem cells: possible application in regenerative medicine. Drug Dev Ind Pharm 43(12):1978–1988PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Liakos IL, Holban AM, Carzino R, Lauciello S, Grumezescu AM (2017) Electrospun fiber pads of cellulose acetate and essential oils with antimicrobial activity. Nanomaterials 7(4):1–10CrossRefGoogle Scholar
  72. 72.
    Ayyar M, Mani MP, Jaganathan SK, Rathinasamy R, Khudzari AZ, Krishnasamy NP (2017) Surface, thermal and hemocompatible properties of novel single stage electrospun nanocomposites comprising polyurethane blended with bio oilTM. An Acad Bras Cienc 89(3 Suppl):2411–2422PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Rieger KA, Birch NP, Schiffman JD (2016) Electrospinning chitosan/poly(ethylene oxide) solutions with essential oils: correlating solution rheology to nanofiber formation. Carbohydr Polym 139:131–138PubMedCrossRefGoogle Scholar
  74. 74.
    Fazili A, Gholami S, Minaie Zangi B, Seyedjafari E, Gholami M (2016) In vivo differentiation of mesenchymal stem cells into insulin producing cells on electrospun poly-l-lactide acid scaffolds Coated with Matricaria chamomilla L. Oil. Cell J 18(3):310–321PubMedGoogle Scholar
  75. 75.
    Bonan RF, Bonan PR, Batista AU, Sampaio FC, Albuquerque AJ, Moraes MC, Mattoso LH, Glenn GM, Medeiros ES, Oliveira JE (2015) In vitro antimicrobial activity of solution blow spun poly(lactic acid)/polyvinylpyrrolidone nanofibers loaded with Copaiba (Copaifera sp.) oil. Mater Sci Eng C 48:372–377CrossRefGoogle Scholar
  76. 76.
    Rieger KA, Schiffman JD (2014) Electrospinning an essential oil: cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly(ethylene oxide) nanofibers. Carbohydr Polym 113:561–568PubMedCrossRefGoogle Scholar
  77. 77.
    Amna T, Hassan MS, Yang J, Khil MS, Song KD, Oh JD, Hwang I (2014) Virgin olive oil blended polyurethane micro/nanofibers ornamented with copper oxide nanocrystals for biomedical applications. Int J Nanomed 9:891–898CrossRefGoogle Scholar
  78. 78.
    Kim JR, Kim SH (2017) Eco-friendly acaricidal effects of nylon 66 nanofibers via grafted clove bud oil-loaded capsules on house dust mites. Nanomaterials 7(7):1–14CrossRefGoogle Scholar
  79. 79.
    Ge L, Zhao Y-s, Mo T, Li J-r, Li P (2012) Immobilization of glucose oxidase in electrospun nanofibrous membranes for food preservation. Food Control 26(1):188–193CrossRefGoogle Scholar
  80. 80.
    Lin L, Dai Y, Cui H (2017) Antibacterial poly(ethylene oxide) electrospun nanofibers containing cinnamon essential oil/beta-cyclodextrin proteoliposomes. Carbohydr Polym 178:131–140PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Cui H, Bai M, Rashed MMA, Lin L (2018) The antibacterial activity of clove oil/chitosan nanoparticles embedded gelatin nanofibers against Escherichia coli O157:H7 biofilms on cucumber. Int J Food Microbiol 266:69–78PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Cui H, Bai M, Lin L (2018) Plasma-treated poly(ethylene oxide) nanofibers containing tea tree oil/beta-cyclodextrin inclusion complex for antibacterial packaging. Carbohydr Polym 179:360–369PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Dias Antunes M, da Silva Dannenberg G, Fiorentini AM, Pinto VZ, Lim LT, da Rosa Zavareze E, Dias ARG (2017) Antimicrobial electrospun ultrafine fibers from zein containing eucalyptus essential oil/cyclodextrin inclusion complex. Int J Biol Macromol 104(Pt A):874–882PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Wen P, Zhu DH, Feng K, Liu FJ, Lou WY, Li N, Zong MH, Wu H (2016) Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/beta-cyclodextrin inclusion complex for antimicrobial packaging. Food Chem 196:996–1004PubMedCrossRefGoogle Scholar
  85. 85.
    Tonglairoum P, Chuchote T, Ngawhirunpat T, Rojanarata T, Opanasopit P (2014) Encapsulation of plai oil/2-hydroxypropyl-beta-cyclodextrin inclusion complexes in polyvinylpyrrolidone (PVP) electrospun nanofibers for topical application. Pharm Dev Technol 19(4):430–437PubMedCrossRefGoogle Scholar
  86. 86.
    Irene B, Veronica A, Laura A, Cosimo C (2014) A hyperbranched polyester as antinucleating agent for Artemisinin in electrospun nanofibers. Eur Polym J 60:145–152CrossRefGoogle Scholar
  87. 87.
    Li F, Zhao Y, Song Y (2010) Core-shell nanofibers: nano channel and capsule by coaxial electrospinning. In: Nanofibers, IntechOpenGoogle Scholar
  88. 88.
    Yao ZC, Chen SC, Ahmad Z, Huang J, Chang MW, Li JS (2017) Essential oil bioactive fibrous membranes prepared via coaxial electrospinning. J Food Sci 82(6):1412–1422PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Wang C, Yan K-W, Lin Y-D, Hsieh PC (2010) Biodegradable core/shell fibers by coaxial electrospinning: processing, fiber characterization, and its application in sustained drug release. Macromolecules 43(15):6389–6397CrossRefGoogle Scholar
  90. 90.
    Díaz JE, Barrero A, Márquez M, Loscertales IG (2006) Controlled encapsulation of hydrophobic liquids in hydrophilic polymer nanofibers by co-electrospinning. Adv Funct Mater 16(16):2110–2116CrossRefGoogle Scholar
  91. 91.
    Yu JH, Fridrikh SV, Rutledge GC (2004) Production of submicrometer diameter fibers by two-fluid electrospinning. Adv Mater 16(17):1562–1566CrossRefGoogle Scholar
  92. 92.
    Nguyen TTT, Ghosh C, Hwang S-G, Chanunpanich N, Park JS (2012) Porous core/sheath composite nanofibers fabricated by coaxial electrospinning as a potential mat for drug release system. Int J Pharm 439(1–2):296–306PubMedCrossRefGoogle Scholar
  93. 93.
    Xia X, Wang X, Zhou H, Niu X, Xue L, Zhang X, Wei Q (2014) The effects of electrospinning parameters on coaxial Sn/C nanofibers: morphology and lithium storage performance. Electrochim Acta 121:345–351CrossRefGoogle Scholar
  94. 94.
    Rieger KA, Birch NP, Schiffman JD (2013) Designing electrospun nanofiber mats to promote wound healing–a review. J Mater Chem B 1(36):4531–4541CrossRefGoogle Scholar
  95. 95.
    Gui X, Hu J, Han Y (2019) Random and aligned electrospun gelatin nanofiber mats for human mesenchymal stem cells. Mater Res Innov 23(4):208–215CrossRefGoogle Scholar
  96. 96.
    Sfakis L, Sharikova A, Tuschel D, Costa FX, Larsen M, Khmaladze A, Castracane J (2017) Core/shell nanofiber characterization by Raman scanning microscopy. Biomed Optics Express 8(2):1025–1035CrossRefGoogle Scholar
  97. 97.
    Ghayempour S, Montazer M (2019) A novel controlled release system based on Tragacanth nanofibers loaded Peppermint oil. Carbohydr Polym 205:589–595PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Medical Nanotechnology, School of Advanced Technologies in MedicineFasa University of Medical SciencesFasaIran
  2. 2.Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
  3. 3.Department of Chemistry, Faculty of ScienceUniversity of TehranTehranIran

Personalised recommendations