Synthesis and properties of degradable gels and porous polymers including acetal group in the network structure by addition reaction of multi-functional phenols and divinyl ether compounds

  • Naofumi NagaEmail author
  • Kazuma Hasegawa
  • Hassan Nageh
  • Tamaki Nakano
Original Paper


Gels containing acetal group have been synthesized by addition reaction of multi-functional phenols, 1,1,1-tris(4-hydroxyphenyl)ethane (THPE) or tannic acid (TA) and divinylethers, diethylene glycol divinyl ether (DEGVE) or polyethylene glycol divinyl ether (PEGVE) in tetrahydrofuran (THF) or 1,4-dioxane (DO) using pyridinium p-toluenesulfonate as a catalyst under nitrogen atmosphere. The gels synthesized from DEGVE showed higher Young’s modulus, breaking stress, and lower breaking strain than the gels synthesized from PEGVE. The gels in DO showed higher mechanical properties than those in THF due to the high affinity between the network structure and the solvent used. The gels with TA showed lower Young’s modulus than those with THPE derived from flexible molecular structure of TA. The reaction of THPE and PEGVE in acetonitrile induced phase separation, and yielded porous polymer formed by connected globules about 10 μm diameter. The dried porous polymers showed remarkable increase in the Young’s modulus in comparison with the corresponding gels in THF or DO. The gels and porous polymers were degraded under atmospheric conditions caused by hydrolytic degradation of acetal groups in the network structure. The present hydrolytic degradable materials would be applicable for drug carriers or sensors for humidity or water.


Phenols Divinyl ether Acetal Gel Porous polymer Network structure Mechanical property 



This work was partially supported by JSPS KAKENHI Grant Number 24550261.

Supplementary material

289_2019_3033_MOESM1_ESM.docx (182 kb)
Supplementary file1 (DOCX 182 kb)


  1. 1.
    Garrison T, Murawski A, Quirino R (2016) Bio-based polymers with potential for biodegradability. Polymers 8:262. CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Acik G, Karabulut HRF, Altinkok C, Karatavuk AO (2019) Synthesis and characterization of biodegradable polyurethanes made from cholic and L-lysine diisocyanate ethyl ether. Polym Degrad Stab 165:43–48. CrossRefGoogle Scholar
  3. 3.
    Kenley RA, Manser GE (1985) Degradable polymers. Incorporating a difunctional azo compound into a polymer network to produce thermally degradable polyurethanes. Macromolecules 18:127–131. CrossRefGoogle Scholar
  4. 4.
    Ogino K, Chen J-S, Ober CK (1988) Synthesis and characterization of thermally degradable polymer networks. Chem Mater 10:383–3838. CrossRefGoogle Scholar
  5. 5.
    Burkoth AK, Anseth KS (1991) MALD-TOF characterization of highly cross-linked, degradable polymer networks. Macromolecules 32:1438–1444. CrossRefGoogle Scholar
  6. 6.
    Timmer MD, Jo S, Wang C, Ambrose CG, Mikos AG (2002) Characterization of the cross-linked structure of fumarate-based degradable polymer networks. Macromolecules 35:4373–4379. CrossRefGoogle Scholar
  7. 7.
    Chen JS, Ober CK, Poliks MD (2002) Characterization of thermally reworkable thermosets: materials for environmentally friendly processing and reuse. Polymer 43:131–139. CrossRefGoogle Scholar
  8. 8.
    Shirai M, Morishita S, Okamura H, Tsunooka M (2002) Photo-cross-linkable polymers with thermally degradable property. Chem Mater 14:334–340. CrossRefGoogle Scholar
  9. 9.
    Johnson JA, Lewis DR, Diaz DD, Finn MG, Koberstein JT, Turro NJ (2006) Synthesis of degradable model networks via ATRP and click chemistry. J Am Chem Soc 128:6564–6565. CrossRefPubMedGoogle Scholar
  10. 10.
    Matsukawa D, Okamura H, Shirai M (2007) Degradable network polymers based on di(metha)acrylate. Chem Lett 36:1290–1291. CrossRefGoogle Scholar
  11. 11.
    Kitamura T, Matsumoto A (2007) Facile synthesis of degradable gels by oxygen cross-linking of polymers including a dienyl group on their side chain or at chain ends. Macromolecules 40:6143–6149. CrossRefGoogle Scholar
  12. 12.
    Kitamura T, Matsumoto A (2007) Synthesis of poly(lactic acid) with branched and network structures containing thermally degradable junctions. Macromolecules 40:509–517. CrossRefGoogle Scholar
  13. 13.
    Brauer DS, Russel C, Vogt S, Weisser J, Schnabelrauch M (2008) Degradable phosphate glass fiber reinforced polymer matrices: mechanical properties and cell response. J Mater Sci Mater Med 19:121–127. CrossRefPubMedGoogle Scholar
  14. 14.
    Shipp DA, McQuinn CW, Rutherglen BG, McBath RA (2009) Elastomeric and degradable polyanhydride network polymers by step-growth thiol-ene photopolymerization. Chem Commun 1:6415–6417. CrossRefGoogle Scholar
  15. 15.
    Mihashi A, Tamura H, Sato H, Matsumoto A (2010) Synthesis of degradable network polymers containing peroxy units in the main chain or the cross-linking point. Prog Org Coat 68:42–47. CrossRefGoogle Scholar
  16. 16.
    Safranski DL, Crabtree JC, Huq YR, Gall K (2011) Thermo-mechanical properties of semi-degradable poly(β-amino ester)-co-methyl methacrylate networks under simulated physiological conditions. Polymer 52:4920–4927. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Fukuda K, Shimoda M, Sukegawa M, Nobori T, Lehn JM (2012) Doubly degradable dynamers: dynamic covalent polymers based on reversible imine and biodegradable polyester units. Green Chem 14:2907–2911. CrossRefGoogle Scholar
  18. 18.
    Kharkar RM, Kiick KL, Kloxin AM (2013) Designing degradable hydrogels for orthogonal control of cell microenvironment. Chem Soc Rev 42:7355–7372. CrossRefGoogle Scholar
  19. 19.
    Shirai M (2014) Photocrosslinkable polymers with degradable properties. Polym J 46:859–865. CrossRefGoogle Scholar
  20. 20.
    Ware T, Jennings AR, Bassampour ZS, Simon D, Son DY, Voit W (2014) Degradable, silyl ether thiol-ene networks. RSC Adv 4:39991–40002. CrossRefGoogle Scholar
  21. 21.
    Kharkar PM, Kiick K, Kloxin AP (2015) Design of thiol- and light-sensitive degradable hydrogels using Michael-type addition reactions. Polym Chem 6:5565–5574. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Xu F, Sheardown H, Hoare T (2016) Reactive electrospinning of degradable poly(oligoethylene glycol methacrylate)-based nanofibrous hydrogel network. Chem Commun 52:1451–1454. CrossRefGoogle Scholar
  23. 23.
    Kamaly N, Yameen B, Wu J, Farokhzad OC (2016) Degradable controlled-release polymers and polymeric nanoparticles: mechanics of controlling drug release. Chem Rev 116:2602–2663. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lu W, Pan X, Zhang Z, Zhu J, Zhou N, Zhu X (2017) A degradable cross-linked polymer containing dynamic covalent selenide bond. Polym Chem 8:3874–3880. CrossRefGoogle Scholar
  25. 25.
    Babra TS, Trivedi A, Warriner CN, Bazin N, Castiglione D, Sivour C, Hayes W, Greenland BW (2017) Fluoride degradable and thermally debondable polyurethane based adhesive. Polym Chem 8:7207–7216. CrossRefGoogle Scholar
  26. 26.
    Bednarek M, Kubisa P (2019) Reversible networks of degradable polyesters containing weak covalent bonds. Polym Chem 10:1848–1872. CrossRefGoogle Scholar
  27. 27.
    De Clercq RR, Goethals EJ (1992) Polymer networks containing degradable polyacetal segments. Macromolecules 25:1109–1113. CrossRefGoogle Scholar
  28. 28.
    Buchwalter SL, Kosbar LL (1996) Cleavable epoxy resins: design for disassembly of a thermoset. J Polym Sci Part A Polym Chem 34:249–260. CrossRefGoogle Scholar
  29. 29.
    Sui XC, Shi Y, Fu ZF (2010) Novel degradable polymer networks containing acetal components and well-defined backbones. Australian J Chem 63:1497–1501. CrossRefGoogle Scholar
  30. 30.
    Sui X (2011) Shi Y, Fu Z (2011) Novel degradable polymer networks containing acetal components. Sci China Chem 54:419–425. CrossRefGoogle Scholar
  31. 31.
    Kepola EJ, Patrickios CS (2018) Networks based on “core-first” star polymers end-linked using a degradable ketal cross-linker: synthesis characterization, and cleavage. Macromol Chem Phys 219:1700404. CrossRefGoogle Scholar
  32. 32.
    Rikkou-Kalourkoti M, Loizou E, Porcar L, Matyjaszewski K, Patrickios CS (2012) End-linked, amphiphilic, degradable polymer conetworks: synthesis by sequential atom transfer radical polymerization using a bifunctional, cleavable initiator. Polym Chem 3:105–116. CrossRefGoogle Scholar
  33. 33.
    Zhao C, Patel K, Aichinger LM, Liu Z, Hu R, Chen H, Li X, Li L, Zhang G, Chang Y, Zheng J (2013) Antifouling and biodegradable poly(N-hydroxyethyl acrylamide) (polyHEAA)-based nanogels. RSC Adv 3:19991–20000. CrossRefGoogle Scholar
  34. 34.
    Cao H, Dong Y, Bre L, Tapeinos C, Wang W, Pandit A (2016) An acetal-based polymeric crosslinker with controlled pH-sensitivity. RSC Adv 6:9064–9611. CrossRefGoogle Scholar
  35. 35.
    Amato DV, Amato DN, Blancett LT, Mavrodi OV, Martin WB, Swilley SN, Sandoz MJ, Shearer G, Mavrodi DV, Patton DL (2018) A bio-based pro-antimicrobial polymer network via degradable acetal linkages. Acta Biomater 67:196–205. CrossRefPubMedGoogle Scholar
  36. 36.
    Miller KA, Morado EG, Samanta SR, Walker BA, Nelson AZ, Sen S, Tran DT, Whitaker DJ, Ewoldt RH, Braun PV, Zimmerman SC (2019) Acid-triggered, acid-generating, and self-amplifying degradable polymers. J Am Chem Soc 141:2838–2842. CrossRefPubMedGoogle Scholar
  37. 37.
    Naga N, Oda E, Toyota A, Horie K, Furukawa H (2006) Tailored synthesis and fundamental characterization of organic-inorganic hybrid gels by means of a hydrosilylation reaction. Macromol Chem Phys 207:627–635. CrossRefGoogle Scholar
  38. 38.
    Naga N, Oda E, Toyota A, Furukawa H (2007) Mesh size control of organic-inorganic hybrid gels by means of a hydrosilylation co-gelation of siloxane or silsesquioxane and α, ω-non-conjugated dienes. Macromol Chem Phys 208:2331–2338. CrossRefGoogle Scholar
  39. 39.
    Naga N, Kihara Y, Miyanaga T, Furukawa H (2009) Synthesis of organic−inorganic hybrid gels from siloxane or silsesquioxane and α, ω-nonconjugated dienes by means of a photo hydrosilylation reaction. Macromolecules 42:3454–3462 CrossRefGoogle Scholar
  40. 40.
    Naga N, Nagino H, Furukawa H (2016) Synthesis of organic-inorganic hybrid gels by means of thiol-ene and azide-alkene reactions. J Polym Sci Part A Polym Chem 54:2229–2238. CrossRefGoogle Scholar
  41. 41.
    Naga N, Michida R, Kudo S, Nagami Y, Moriyama K, Nageh H, Furukawa H, Nakano T (2019) Synthesis of joint-linker type gels and porous polymers by addition reactions of multi-functional thiol and alkyl diacrylate, diisocyanate compounds. Mater Today Commun 1:18153–18162. CrossRefGoogle Scholar
  42. 42.
    Hashimoto T, Misawa K, Urushisaki M (2008) Synthesis and properties of chemically recyclable polyurethane thermoplastic elastomers containing degradable polyacetal soft segments. Kobunshi Ronbunshu 65:178–184. CrossRefGoogle Scholar
  43. 43.
    Hashimoto T, Umehara A, Ishizuka K, Kodaira T (2001) New synthetic method of hydroxyl-terminated telechelic polyacetals based on polyaddition of hydroxyalkyl vinyl ether in the presence of diol. Proc Jpn Acad Ser B 77:63–67. CrossRefGoogle Scholar
  44. 44.
    Hashimoto T, Ishizuka K, Umehara A, Kodaira T (2002) Synthesis of polyacetals with various main-chain structures by the self-polyaddition of vinyl ethers with a hydroxyl function. J Polym Sci Part A Polym Chem 40:4053–4064. CrossRefGoogle Scholar
  45. 45.
    Hashimoto T, Umehara A, Urushisaki M, Kodaira T (2004) Synthesis of a new degradable polyurethane elastomer containing polyacetal soft segments. J Polym Sci Part A Polym Chem 42:2766–2773. CrossRefGoogle Scholar
  46. 46.
    Fedros RF (1974) A method for estimating both the solubility parameters and molar volumes of liquids. Polym Eng Sci 14:147–154. CrossRefGoogle Scholar
  47. 47.
    Inoue T (1995) Reaction-induced phase decomposition in polymer blends. Prog Polym Sci 20:119–153. CrossRefGoogle Scholar
  48. 48.
    Yamanaka K, Inoue T (1989) Structure development in epoxy resin modified with poly(ether sulphone). Polymer 30:662–667. CrossRefGoogle Scholar
  49. 49.
    Ohnaga T, Inoue T (1989) Growth and decay of concentration fluctuations in polymer–polymer mixtures. J Polym Sci Part B Polym Phys 27:1675–1689. CrossRefGoogle Scholar
  50. 50.
    Inoue T, Ichihara S (1988) Polymer alloy. In: Society of Polymer Science (ed). Kyoritsu Shuppan, JapanGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied Chemistry, College of EngineeringShibaura Institute of TechnologyTokyoJapan
  2. 2.Graduate School of Engineering and ScienceShibaura Institute of TechnologyTokyoJapan
  3. 3.Institute for Catalysis and Graduate School of Chemical Sciences and EngineeringHokkaido UniversitySapporoJapan
  4. 4.Integrated Research Consortium On Chemical Sciences, Institute for CatalysisHokkaido UniversitySapporoJapan

Personalised recommendations