Advertisement

Effect of ultrasonic irradiation on low-density polyethylene molecular structure

  • J. G. Martinez-ColungaEmail author
  • S. Sanchez-Valdes
  • L. F. Ramos-deValle
  • E. Ramirez-Vargas
  • C. Avila-Orta
  • J. A. Rodriguez-Gonzalez
  • C. J. Espinoza-González
  • R. Benavides-Cantú
  • T. Lozano-Ramírez
Original Paper
  • 17 Downloads

Abstract

The effect of ultrasonic (US) irradiation on solutions of low-density polyethylene (LDPE) was studied. Different irradiation times and intensities were examined. It was found that gel content increased very little as a result of US irradiation. However, this increase showed no variation with either the US irradiation time or intensity. The IR spectra of irradiated LDPE showed new absorption bands, indicating the presence of C–O groups, assumed to be the result of the US irradiation. GPC showed that the LDPE average molecular weight (Mw) decreases with an increase in either the US irradiation time or intensity. But these MWD curves, however, do not say if the “observed” modifications in Mw are due to chain scission or chain branching, which was inferred from the chain scission distribution function (CSDF) curves. From the GPC curves, it appears that chain scission is the dominant reaction at all US irradiation times and intensities. On the contrary, using the CSDF methodology, it appears that chain scission is the dominant reaction up to the intermediate irradiation times and intensities, but chain branching becomes dominant at the US higher times and intensities. On the contrary, using the proposed methodology, it appears that chain scission is the dominant reaction up to the intermediate irradiation times and power intensities, but chain branching becomes dominant at higher times and power intensities.

Keywords

Polyethylene Ultrasonic irradiation CSDF Molecular weight 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support of CONACyT through projects Consolidación del Laboratorio Nacional de Materiales Grafenicos 299124 The authors also wish to thank Blanca Huerta, Guadalupe Mendez, Myriam Lozano, Jose Lopez, Ma Concepción González, Francisco Zendejo, Mario Palacios, Rodrigo Cedillo, Jesus Rodríguez, Sergio Zertuche, Adán Herrera, Luis Enrique Reyes, Alejandro Espinosa, Seyma de Leon, Josue Campos, Efraín Alvidrez, Marcelo Ulloa, Rosario Rangel, Anabel Ochoa and Daniel Alvarado, Guadalupe Tellez, Jorge Espinosa for their technical and informatics support.

References

  1. 1.
    Price GJ, West PJ (1996) Ultrasonic production of block copolymers as in situ compatibilizers for polymer mixtures. Polymer 37:3975–3978CrossRefGoogle Scholar
  2. 2.
    Chen G, Guo S, Li H (2002) Ultrasonic improvement of the compatibility and rheological behavior of high-density polyethylene/polystyrene blends. J Appl Polym Sci 86:23–32CrossRefGoogle Scholar
  3. 3.
    McKenzie TG, Karimi F, Ashokkumar M, Qiao GG (2019) Ultrasound and sonochemistry for radical polymerization: sound synthesis. Chem Eur J 25:5372–5388PubMedCrossRefGoogle Scholar
  4. 4.
    Chen G, Guo S, Li Y (2004) Dynamic rheological properties of high-density polyethylene/polystyrene blends extruded in the presence of ultrasonic oscillations. J Appl Polym Sci 92:3153–3158CrossRefGoogle Scholar
  5. 5.
    Chen Y, Li H (2004) Effect of ultrasound on extrusion of PP/EPDM blends: structure and mechanical properties. Polym Eng Sci 44:1509–1513CrossRefGoogle Scholar
  6. 6.
    Feng W, Isayev AI (2004) In-situ ultrasonic compatibilization of unvulcanized and dynamically vulcanized PP/EPDM blends. Polym Eng Sci 44:2019–2028CrossRefGoogle Scholar
  7. 7.
    Wu H, Guo S, Li Z (2005) Molecular structure development of metallocene-catalyzed linear low density polyethylene under ultrasonic irradiation. J Polym Sci Part B Polym Phys 43:2121–2129CrossRefGoogle Scholar
  8. 8.
    Li Y, Chen G, Guo S, Li H (2006) Studies on rheological behavior and structure development of high-density polyethylene in the presence of ultrasonic oscillations during extrusion. J Macromol Sci Part B Phys 45:39–52CrossRefGoogle Scholar
  9. 9.
    Poddar MK, Arjmand M, Sundararaj U, Moholkar VS (2018) Ultrasound-assisted synthesis and characterization of magnetite nanoparticles and poly (methyl methacrylate)/magnetite nanocomposites. Ultrason Sonochem 43:38–51PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Azarpour A, Zendehboudi S, Yusup S, Khalid A, Zhang Y (2019) Effects of ultrasonic cavitation on neutralization process of low molecular weight polyethylene glycol. Can J Chem Eng 97:395–405CrossRefGoogle Scholar
  11. 11.
    Chen Y, Li H (2005) Effect of ultrasound on the morphology and properties of polypropylene/inorganic filler composites. J Appl Polym Sci 97:1553–1560CrossRefGoogle Scholar
  12. 12.
    Kumar RV, Koltypin Y, Palchik O, Gedanken A (2002) Preparation and characterization of nickel–polystyrene nanocomposite by ultrasound irradiation. J Appl Polym Sci 86:60–165CrossRefGoogle Scholar
  13. 13.
    Gedanken A (2004) Using sonochemistry for the fabrication of nanomaterials. Ultrason Sonochem 11:47–55PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Vijayalakshmi SP, Madras G (2005) Effect of initial molecular weight and solvents on the ultrasonic degradation of poly (ethylene oxide). Polym Degrad Stab 90:116–122CrossRefGoogle Scholar
  15. 15.
    Li Y, Li J, Guo S, Li H (2005) Mechanochemical degradation kinetics of high-density polyethylene melt and its mechanism in the presence of ultrasonic irradiation. Ultrason Sonochem 12:183–189PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Price GJ, Garland L, Comina J, Davis M, Snell DJ, West PJ (2004) Investigation of radical intermediates in polymer sonochemistry. Res Chem Intermed 30:807–827.  https://doi.org/10.1163/1568567041856972 CrossRefGoogle Scholar
  17. 17.
    Peng B, Wu H, Guo S, Lai SY, Jow J (2007) Static ultrasonic oscillations induced degradation and its effect on the linear rheological behavior of novel propylene based plastomer melts. Polym Degrad Stab 92:1632–1639CrossRefGoogle Scholar
  18. 18.
    Mehrdad A, Rostami MR (2007) Effect of temperature and solution concentration on the ultrasonic degradation of the aqueous solutions of polyethylene oxide. Iran Polym J 16:795–801Google Scholar
  19. 19.
    Desai V, Shenoy MA, Gogate PR (2008) Ultrasonic degradation of low-density polyethylene. Chem Eng Process 47:1451–1455CrossRefGoogle Scholar
  20. 20.
    Desai V, Shenoy MA, Gogate PR (2008) Degradation of polypropylene using ultrasound-induced acoustic cavitation. Chem Eng J 140:483–487CrossRefGoogle Scholar
  21. 21.
    Zachary SK, Stephen LC (2012) Mechanochemical remodeling of synthetic polymers. Polymer 53:1035–1048CrossRefGoogle Scholar
  22. 22.
    Peng P, Hong W, Wenting B, Shaoyun G, Yong C, Hua H, Shih-Yaw L, Jinder J (2012) Ultrasound initiated maleic anhydride grafted onto a novel polypropylene copolymer. Polym Eng Sci 52:518–524CrossRefGoogle Scholar
  23. 23.
    Chen D, He Z, Weavers LK, Chin Y-P, Walker HW, Hatcher PG (2004) Sonochemical reactions of dissolved organic matter. Res Chem Intermed 30:735–753CrossRefGoogle Scholar
  24. 24.
    Nasir BRB, Rajender SV (2012) Alternative energy input: mechanochemical, microwave and ultrasound-assisted organic synthesis. Chem Soc Rev 41:1559–1584CrossRefGoogle Scholar
  25. 25.
    Li J, Liang M, Guo S, Lin Y (2004) Studies on chain scission and extension of polyamide 6 melt in the presence of ultrasonic irradiation. Polym Degrad Stab 86:323–329CrossRefGoogle Scholar
  26. 26.
    David C, Trojan M, Daro A (1992) Photodegradation of polyethylene: comparison of various photoinitiators in natural weathering conditions. Polym Degrad Stab 37:233–245CrossRefGoogle Scholar
  27. 27.
    Kaan G, Isayev AI (2011) In situ compatibilization of PEN/LCP blends by ultrasonic extrusion. J Appl Polym Sci 122:354–365CrossRefGoogle Scholar
  28. 28.
    Jun Q, Zhang H, Yongshen X (2010) Grafting of maleic anhydride onto polyethylene wax by melt ultrasound and solid co-irradiation. Plasma Sci Plasma Technol 165:834–844Google Scholar
  29. 29.
    Ali A, Catalgil GH, Ahmet G (2009) Effect of solvent characteristics on the ultrasonic degradation of poly (vinylpyrrolidone) studied by on-line monitoring. Macromol Chem Phys 210:1331–1338CrossRefGoogle Scholar
  30. 30.
    Taghizadeh T, Rad H, Abdollahi R (2012) A kinetic study of ultrasonic degradation of carboxymethyl cellulose. J Appl Polym Sci 123:1896–1904CrossRefGoogle Scholar
  31. 31.
    Qing SZ, Yuan YP, Su XL, Qing W, Xiao W, Shan Ch (2011) Ultrasonic degradation of dextran in aqueous solution. Adv Mater Res 396–398:1624–1627Google Scholar
  32. 32.
    Mohod AV, Gogate PR (2011) Ultrasonic degradation of polymers: effect of operating parameters and intensification using additives for carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA). Ultrason Sonochem 18:727–734PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Goodwin DJ, Picou DR, Ross-Murphy SB, Holland SJ, Martini LG, Lawrence MJ (2011) Ultrasonic degradation for molecular weight reduction of pharmaceutical cellulose ethers. Carbohydr Polym 82:843–851CrossRefGoogle Scholar
  34. 34.
    Sathiskumar PS, Madras G (2012) Ultrasonic degradation of butadiene, styrene and their copolymers. Ultrason Sonochem 19:503–508PubMedCrossRefGoogle Scholar
  35. 35.
    Rooze J, Groote R, Jakobs RTM, Sijbesma RP, Van-Iersel MM, Rebrov EV, Schouten JC, Keurentjes JTF (2011) Mechanism of ultrasound scission of a silver–carbene coordination polymer. Polym J Phys Chem B 115:11038–11043CrossRefGoogle Scholar
  36. 36.
    Mehrdad A (2011) Ultrasonic degradation of polyvinyl pyrrolidone in mixed water/acetone. J Appl Polym Sci 120:3701–3708CrossRefGoogle Scholar
  37. 37.
    Shinobu K, Kimihiko T, Kazunori F (2011) Effects of frequency and a radical scavenger on ultrasonic degradation of water-soluble polymers. Polymer 18:276–281Google Scholar
  38. 38.
    Kumar VK, Madras G (2010) Ultrasonic degradation of poly (methyl methacrylate-co-alkyl acrylate) copolymers. Ultrason Sonochem 17:403–408CrossRefGoogle Scholar
  39. 39.
    Tran KVB, Koda S (2010) Frequency dependence of acoustic degradation of polymer in solution. In Proceedings of symposium on ultrasonic electronics, vol 31, pp 433--434Google Scholar
  40. 40.
    Madras VRG (2011) Kinetics of sono-photooxidative degradation of poly (alkyl methacrylate). Ultrason Sonochem 18:608–616PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Price GJ, Smith PF (1993) Ultrasonic degradation of polymer solutions—III. The effect of changing solvent and solution concentration. Eur Polym J 29:419–424CrossRefGoogle Scholar
  42. 42.
    Price GJ, Clifton AA, Keen F (1996) Ultrasonically enhanced persulfate oxidation of polyethylene surfaces. Polymer 37:5825–5829CrossRefGoogle Scholar
  43. 43.
    Price GJ, Keen F, Clifton AA (1996) Sonochemically-assisted modification of polyethylene surfaces. Macromolecules 29:5664–5670CrossRefGoogle Scholar
  44. 44.
    Canevarolo SV (2000) Chain scission distribution function for polypropylene degradation during multiple extrusions. Polym Degrad Stab 70:71–76CrossRefGoogle Scholar
  45. 45.
    Martini ER, Brignole AE, Barbosa ES (2007) Mechanical degradation of polypropylene solutions under large pressure drops. J Polym Sci Part B Polym Phys 45:455–465CrossRefGoogle Scholar
  46. 46.
    Otaguro H, De Lima LFCP, Parra FD, Lugao BA, Chinelatto AM, Canevarolo VS (2010) High-energy radiation forming chain scission and branching in polypropylene. Radiat Phys Chem 79:318–324CrossRefGoogle Scholar
  47. 47.
    Pinheiro AL, Chinelatto AM, Canevarolo VS (2000) Evaluation of Philips and Ziegler–Natta high-density polyethylene degradation during processing in an internal mixer using the chain scission and branching distribution function analysis. Polym Degrad Stab 91:2324–2332CrossRefGoogle Scholar
  48. 48.
    Cáceresa CA, Zborowskia L, Canevarolo SV (2011) Thermo-mechanical degradation and VOC emission of unstabilized and stabilized polypropylene copolymer during multiple extrusions. Mater Res 14:569–575CrossRefGoogle Scholar
  49. 49.
    Cosate MF, Fonseca G, Morales AR, Innocentini LH (2018) Mechanical recycling simulation of polylactide using a chain extender. Adv Polym Technol 37:2053–2060CrossRefGoogle Scholar
  50. 50.
    Rabek JR (1995) Polymer photodegradation mechanisms and experimental methods. Spring, Berlin, pp 73–83CrossRefGoogle Scholar
  51. 51.
    Gardette M, Perthue A, Gardette JL, Janecska T, Földes E, Pukánszky B, Theriasa S (2013) Photo- and thermal oxidation of polyethylene: comparison of mechanisms and influence of unsaturation content. Polym Degrad Stab 98:2383–2390CrossRefGoogle Scholar
  52. 52.
    Sheika S, Chandrashekar KR, Swaroopb K, Somashekarappa HM (2015) Biodegradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi. Int Biodeterior Biodegrad 105:21–29CrossRefGoogle Scholar
  53. 53.
    Martinez JG, Benavides R, Guerrero C, Reyes BE (2004) UV sensitisation of polyethylenes for grafting of maleic anhydride. Polym Degrad Stab 86:129–134CrossRefGoogle Scholar
  54. 54.
    Cheng NH (1986) Determination of polyethylene branching through computerized 13C NMR analysis. Polym Bull 16:445–452CrossRefGoogle Scholar
  55. 55.
    Zhu F, Fang Y, Chen H, Lin S (2000) Synthesis of characterization of branched polyethylene by ethylene homopolymerization with monotitanocene and modified methylaluminoxane catalysts. Macromolecules 33:5006–5010CrossRefGoogle Scholar
  56. 56.
    Cudby AEM, Bunn A (1976) Determination of cauin branching in the low density polyethylene by 13C nuclear magnetic resonance and infra-red spectroscopy. Polymer 17:345–347CrossRefGoogle Scholar
  57. 57.
    Bovey AF, Schilling CF, McCracking LF, Wagner LH (1976) Shirt chain and long chain branching in low density polyethylene. Macromolecules 9:76–80CrossRefGoogle Scholar
  58. 58.
    Blitz PJ, McFaddin CD (1994) The characterization of short chain branching in polyethylene using fourier transform infrared spectroscopy. J Appl Polym Sci 51:13–20CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • J. G. Martinez-Colunga
    • 1
    Email author
  • S. Sanchez-Valdes
    • 1
  • L. F. Ramos-deValle
    • 1
  • E. Ramirez-Vargas
    • 1
  • C. Avila-Orta
    • 1
  • J. A. Rodriguez-Gonzalez
    • 1
  • C. J. Espinoza-González
    • 1
  • R. Benavides-Cantú
    • 1
  • T. Lozano-Ramírez
    • 2
  1. 1.Centro de Investigación En Química AplicadaSaltilloMexico
  2. 2.Instituto Tecnológico de Cd. MaderoCd. MaderoMexico

Personalised recommendations