Synthesis of high-performance triphenylamine-based polyfluorenes via C–N coupling reaction: thermal and photoelectric properties

  • Yi XuEmail author
  • Nan Yang
  • Qiang He
  • Hai Li
  • Yi WuEmail author
Original Paper


Aromatic high-performance triphenylamine-based polyfluorenes (PTPAFs) have been successfully constructed by palladium-catalyzed polycondensation reaction. The chemical structures of the resulting PTPAFs are confirmed by means of Fourier-transform infrared spectroscopy and nuclear magnetic resonance, and the testing results showed a good agreement with the proposed structures. The resulted polymers show excellent solubility, high thermal stability with the decomposition temperatures (Td5%) over 320 °C and the glass transition temperatures (Tg) over 305 °C. The PTPAF1 and the PTPAF2 exhibit the enhanced high occupied molecular orbital (HOMO) energy levels (− 3.93 eV, − 4.00 eV, respectively) and the depressed low unoccupied molecular orbital (LUMO) energy levels (− 0.99 eV, − 1.41 eV, respectively). Owing to their special structures, PTPAFs showed encouraging photonic luminescence and good electroactivity and could be used as a potential light source in the blue region.


High-performance polymer Palladium-catalyzed amination reaction Triphenylamine Polyfluorene 



This research was financially supported by the National Natural Science Foundation of China (No. U1233202 and No. 51175434); the Youth Research Foundation of the Civil Aviation Flight University of China (No. Q2019-106), the Laboratory Research Foundation for the State Key Laboratory of Environment-friendly Energy Materials (No. 17kffk03).


  1. 1.
    Nguyen T-P (2011) Polymer-based nanocomposites for organic optoelectronic devices. A review. Surf Coat Technol 206:742–752CrossRefGoogle Scholar
  2. 2.
    Cao WR, Li J, Chen HZ et al (2014) Transparent electrodes for organic optoelectronic devices: a review. J Photon Energy 4(1):040990CrossRefGoogle Scholar
  3. 3.
    Levenson R, Liang J, Rossier C et al (1995) Advances in organic polymer-based optoelectronicsGoogle Scholar
  4. 4.
    Fink J, Nücker N, Scheerer B et al (1987) Electronic structure of undoped and doped polyphenylenevinylene 79–83Google Scholar
  5. 5.
    Zhang W, Wu X, Yan W et al (2017) High-performance polythiothene film covalently bonded to ITO electrode: synthesis and electrochromic properties. Sol Energy Mater Sol Cells 177:15–22CrossRefGoogle Scholar
  6. 6.
    Xie LH, Yin CR, Lai WY et al (2012) Polyfluorene-based semiconductors combined with various periodic table elements for organic electronics. Prog Polym Sci 37(9):1192–1264CrossRefGoogle Scholar
  7. 7.
    Jung BJ, Shim H-K, Hwang D-H (2014) Chapter 5 polyfluorenes. Conjugated polymers: a practical guide to synthesis. The Royal Society of Chemistry, vol 2014, pp 87–112Google Scholar
  8. 8.
    Zhang R, Feng X, Zhang R et al (2019) Breaking parallel orientation of rods via a dendritic architecture toward diverse supramolecular structures. Angew Chem 131(34):12005–12011CrossRefGoogle Scholar
  9. 9.
    Lin Z, Yang X, Xu H et al (2017) Topologically directed assemblies of semiconducting sphere-rod conjugates. J Am Chem Soc 139(51):18616–18622CrossRefGoogle Scholar
  10. 10.
    Fukuda M, Sawada K, Yoshino K (1989) Fusible conducting poly(9-alkylfluorene) and poly(9,9-dialkylfluorene) and their characteristics. Jpn J Appl Phys 28(2):8Google Scholar
  11. 11.
    Fukuda M, Sawada K, Yoshino K (1993) Synthesis of fusible and soluble conducting polyfluorene derivatives and their characteristics. J Polym Sci, Part A Polym Chem 31(10):2465–2471CrossRefGoogle Scholar
  12. 12.
    Uchida M, Ohmori Y, Morishima C et al (1993) Visible and blue electroluminescent diodes utilizing poly(3-alkylthiophene)s and poly(alkylfluorene)s. Synth Met 57(1):4168–4173CrossRefGoogle Scholar
  13. 13.
    Bernius MT, Inbasekaran M, Brien JO et al (2000) Progress with light-emitting polymers. Adv Mater 12(23):1737–1750CrossRefGoogle Scholar
  14. 14.
    Grice AW, Bradley D, Bernius M et al (1998) High brightness and efficiency blue light-emitting polymer diodes. Appl Phys Lett 73:629–631CrossRefGoogle Scholar
  15. 15.
    Liu B, Huang W (2002) Novel deep blue fluorescent fluorene-based copolymer containing hole-transporting arylamine segments. Thin Solid Films 417(1–2):206–210CrossRefGoogle Scholar
  16. 16.
    Wang X, Zhao L, Shao S et al (2014) Poly(spirobifluorene)s containing nonconjugated diphenylsulfone moiety: toward blue emission through a weak charge transfer effect. Macromolecules 47(9):2907–2914CrossRefGoogle Scholar
  17. 17.
    Li N, Zong L, Wu Z et al (2018) Compatibilization effect of aminated poly(phthalazinone ether ketone)s in carbon fiber-reinforced copoly(phthalazinone ether sulfone)s composites. Polym Compos 39(11):4139–4147CrossRefGoogle Scholar
  18. 18.
    Li N, Hu Z, Huang Y (2018) Preparation and characterization of nanocomposites of poly(p-phenylene benzobisoxazole) with aminofunctionalized graphene. Polym Compos 39(8):2969–2976CrossRefGoogle Scholar
  19. 19.
    Wei W, Chang G, Xu Y et al (2018) An indole-based conjugated microporous polymer: a new and stable lithium storage anode with high capacity and long life induced by cation-p interactions and a N-rich aromatic structure. J Mater Chem A 2018(6):18794–18798CrossRefGoogle Scholar
  20. 20.
    Chang GJ, Shang ZF, Yu T et al (2016) Rational design of a novel indole-basedmicroporous organic polymer: enhanced carbondioxide uptake via local dipolep interactions. J Mater Chem A 4:2517–2523CrossRefGoogle Scholar
  21. 21.
    Lee W, Kim GH, Ko SJ et al (2015) Semicrystalline D-A copolymers with different chain curvature for applications in polymer optoelectronic devices. Macromolecules 47(5):1604–1612CrossRefGoogle Scholar
  22. 22.
    Ruiz-Castillo P, Leffler Buchwald S (2016) Applications of palladium-catalyzed C-N cross-coupling reactions. Chem Rev 116(19):12564–12649CrossRefGoogle Scholar
  23. 23.
    Chang G, Luo X, Zhang L et al (2007) Synthesis of novel high-performance polymers via Pd-catalyzed amination of dibromoarenes with primary aromatic diamines. Macromolecules 40(24):8625–8630CrossRefGoogle Scholar
  24. 24.
    Al-Hussaini AS (2014) Synthesis and characterization of new thermally stable polymers as new high-performance engineering plastics. High Perform Polym 26(2):166–174CrossRefGoogle Scholar
  25. 25.
    Workman J (2001) The handbook of organic compoundsGoogle Scholar
  26. 26.
    Yeh KM, Chen Y (2008) Vinyl polymer containing 1,4-distyrylbenzene chromophores: synthesis, optical, electrochemical properties and its blend with PVK and Ir(ppy) 3. Synth Met 158(10):0–416CrossRefGoogle Scholar
  27. 27.
    Redecker M, Bradley DDC, Inbasekaran M et al (1998) Nondispersive hole transport in an electroluminescent polyfluorene. Appl Phys Lett 73(11):1565–1567CrossRefGoogle Scholar
  28. 28.
    Miteva T, Meisel A, Knoll W et al (2001) Improving the performance of polyfluorene-based organic light-emitting diodes via end-capping. Adv Mater 13(8):565–570CrossRefGoogle Scholar
  29. 29.
    Hu L-W, Liang L, Yang Y et al (2018) Green-emitting polyfluorenes containing hexylthiophen-dibenzothiophene-S, S-dioxide unit with large two-photon absorption cross section. Chin J Polym Sci 36(04):546–554CrossRefGoogle Scholar
  30. 30.
    Li N, Wu Z, Yang X et al (2018) One-pot strategy for covalent construction of POSS-modified silane layer on carbon fiber to enhance interfacial properties and anti-hydrothermal aging behaviors of PPBES composites. J Mater Sci 53(24):16303–16317CrossRefGoogle Scholar
  31. 31.
    Chang G, Yang L, Yang J et al (2018) High-performance pH-switchable supramolecular thermosets via cation–π interactions. Adv Mater 30(7):1704234CrossRefGoogle Scholar
  32. 32.
    Yang P, Yang L, Wang Y et al (2019) An indole-based aerogel for enhanced removal of heavy metals from water via the synergistic effects of complexation and cation–π interactions. J Mater Chem A 7:531–539CrossRefGoogle Scholar
  33. 33.
    Li N, Yang X, Bao F et al (2019) Improved mechanical properties of copoly(phthalazinone ether sulphone)s composites reinforced by multiscale carbon fibre/graphene oxide reinforcements: a step closer to industrial production. Polymers 11(2):237CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Aviation Engineering Institute, Civil Aviation Flight University of ChinaGuanghanPeople’s Republic of China

Personalised recommendations