Photoluminescence in non-conjugated polyelectrolyte films containing 7-hydroxy-flavylium cation

  • Aldo S. Estrada-Montaño
  • Daniel Espinobarro-Velázquez
  • Marysol Sauzameda
  • Estefanía Terrazas
  • Reyna Reyes-Martínez
  • Daniel Lardizábal
  • Laura  Alicia Manjarrez-NevárezEmail author
  • Gerardo Zaragoza-GalánEmail author
Original Paper


Chitosan–carboxymethylcellulose/flavylium salt (Ch–CMC/FS) films were obtained at different flavylium salt (FS) concentrations under acidic conditions in order to maintain de benzopyrylium form of the flavylium organic cation. Films were characterized by Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, UV–Vis diffuse reflectance (DRUV) and emission spectroscopy. Thermal properties were also recorded by means of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques. FTIR and Raman spectra showed shifting of the carbonyl vibrations after addition of flavylium salt compound. Thermal stability prevailed even after addition of FS as was determined by TGA and DSC analysis. Ch–CMC/FS showed strong absorption in the visible part of the electromagnetic spectrum centred around λ = 450 nm. Luminescence profile after excitation at λ = 450 nm showed an emission centred around λ = 507 nm. FS appears to be chemically stabilized by the interaction with polyelectrolyte chains.


Flavylium salt Chitosan Carboxymethylcellulose Polyelectrolyte Fluorescence 



GZG thanks to Consejo Nacional de Ciencia y Tecnología (CONACyT) for support (CB-2013-01-222847 and INFRA-2015-01-251400). ASEM thanks CONACyT for a postdoctoral scholarship. DEV acknowledges the support given by PRODEP (OF-178204) and CONACyT (Grant No. 207363). Thanks to Raúl Orozco-Mena from Universidad Nacional Autónoma de Chihuahua for the recording of Raman spectroscopy.


  1. 1.
    Luo Y, Wang Q (2014) Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol 64:353–367. CrossRefPubMedGoogle Scholar
  2. 2.
    Conzatti G, Faucon D, Castel M et al (2017) Alginate/chitosan polyelectrolyte complexes: a comparative study of the influence of the drying step on physicochemical properties. Carbohydr Polym 172:142–151. CrossRefPubMedGoogle Scholar
  3. 3.
    Argüelles-Monal W, Peniche-Covas C (1988) Study of the interpolyelectrolyte reaction between chitosan and carboxymethyl cellulose. Makromol Chem Rapid Commun 9:693–697. CrossRefGoogle Scholar
  4. 4.
    Liuyun J, Yubao L, Chengdong X (2009) A novel composite membrane of chitosan-carboxymethyl cellulose polyelectrolyte complex membrane filled with nano-hydroxyapatite I. Preparation and properties. J Mater Sci Mater Med 20:1645–1652. CrossRefPubMedGoogle Scholar
  5. 5.
    Zhu S, Song Y, Shao J et al (2015) Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units. Angew Chem Int Ed 54:14626–14637. CrossRefGoogle Scholar
  6. 6.
    Song J, Zhou H, Gao R et al (2018) Selective determination of Cr(VI) by glutaraldehyde cross-linked chitosan polymer fluorophores. ACS Sens 3:792–798. CrossRefPubMedGoogle Scholar
  7. 7.
    Urreaga JM, de la Orden MU (2006) Chemical interactions and yellowing in chitosan-treated cellulose. Eur Polym J 42:2606–2616. CrossRefGoogle Scholar
  8. 8.
    Choi I, Lee JY, Lacroix M, Han J (2017) Intelligent pH indicator film composed of agar/potato starch and anthocyanin extracts from purple sweet potato. Food Chem 218:122–128. CrossRefPubMedGoogle Scholar
  9. 9.
    Bettini S, Valli L, Santino A et al (2012) Spectroscopic investigations, characterization and chemical sensor application of composite Langmuir–Schäfer films of anthocyanins and oligophenylenevinylene derivatives. Dyes Pigm 94:156–162. CrossRefGoogle Scholar
  10. 10.
    Aguilar-Castillo BA, Sánchez-Bojorge NA, Chávez-Flores D et al (2018) Naphtyl- and pyrenyl-flavylium dyads: synthesis, DFT and optical properties. J Mol Struct 1155:414–423. CrossRefGoogle Scholar
  11. 11.
    Rosca C, Popa MI, Lisa G, Chitanu GC (2005) Interaction of chitosan with natural or synthetic anionic polyelectrolytes. 1. The chitosan-carboxymethylcellulose complex. Carbohydr Polym 62:35–41. CrossRefGoogle Scholar
  12. 12.
    Xie YL, Wang MJ, Yao SJ (2009) Preparation and characterization of biocompatible microcapsules of sodium cellulose sulfate/chitosan by means of layer-by-layer self-assembly. Langmuir 25:8999–9005. CrossRefPubMedGoogle Scholar
  13. 13.
    Osman Z, Arof AK (2003) FTIR studies of chitosan acetate based polymer electrolytes. Electrochim Acta 48:993–999. CrossRefGoogle Scholar
  14. 14.
    Zaja̧c A, Hanuza J, Wandas M, Dymińska L (2015) Determination of N-acetylation degree in chitosan using Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 134:114–120. CrossRefPubMedGoogle Scholar
  15. 15.
    Taubner T, Synytsya A, Čopíková J (2015) Preparation of amidated derivatives of carboxymethylcellulose. Int J Biol Macromol 72:11–18. CrossRefPubMedGoogle Scholar
  16. 16.
    Aswathy RG, Sivakumar B, Brahatheeswaran D et al (2012) Multifunctional biocompatible fluorescent carboxymethyl cellulose nanoparticles. J Biomater Nanobiotechnol 03:254–261. CrossRefGoogle Scholar
  17. 17.
    Golbaghi L, Khamforoush M, Hatami T (2017) Carboxymethyl cellulose production from sugarcane bagasse with steam explosion pulping: experimental, modeling, and optimization. Carbohydr Polym 174:780–788. CrossRefPubMedGoogle Scholar
  18. 18.
    Georgieva V, Zvezdova D, Vlaev L (2012) Non-isothermal kinetics of thermal degradation of chitosan. Chem Cent J 6:81. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhao Q, Qian J, An Q et al (2009) Synthesis and characterization of soluble chitosan/sodium carboxymethyl cellulose polyelectrolyte complexes and the pervaporation dehydration of their homogeneous membranes. J Membr Sci 333:68–78. CrossRefGoogle Scholar
  20. 20.
    Appelqvist IAM, Cooke D, Gidley MJ, Lane SJ (1993) Thermal properties of polysaccharides at low moisture: 1—an endothermic melting process and water-carbohydrate interactions. Carbohydr Polym 20:291–299. CrossRefGoogle Scholar
  21. 21.
    Yuan RB, Thompson D (1994) Sub-Tg thermal properties of amorphous waxy starch and its derivates. Carbohydr Polym 25:1–6. CrossRefGoogle Scholar
  22. 22.
    Thiewes HJ, Steeneken PAM (1997) The glass transition and the sub-Tg endotherm of amorphous and native potato starch at low moisture content. Carbohydr Polym 32:123–130. CrossRefGoogle Scholar
  23. 23.
    Yu HL, Feng ZQ, Zhang JJ et al (2018) The evaluation of proanthocyanidins/chitosan/lecithin microspheres as sustained drug delivery system. BioMed Res Int 2018:1–11. Article ID 9073420. Google Scholar
  24. 24.
    Zhang C, Ma Y, Zhao X, Mu J (2009) Influence of copigmentation on stability of anthocyanins from purple potato peel in both liquid state and solid state. J Agric Food Chem 57:9503–9508. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Aldo S. Estrada-Montaño
    • 1
  • Daniel Espinobarro-Velázquez
    • 2
  • Marysol Sauzameda
    • 1
  • Estefanía Terrazas
    • 1
  • Reyna Reyes-Martínez
    • 1
  • Daniel Lardizábal
    • 3
  • Laura  Alicia Manjarrez-Nevárez
    • 1
    Email author
  • Gerardo Zaragoza-Galán
    • 1
    Email author
  1. 1.Facultad de Ciencias QuímicasUniversidad Autónoma de Chihuahua, Circuito UniversitarioChihuahuaMexico
  2. 2.Facultad de IngenieríaUniversidad Autónoma de Chihuahua, Circuito UniversitarioChihuahuaMexico
  3. 3.Centro de Investigación en Materiales Avanzados, S.C.ChihuahuaMexico

Personalised recommendations