Advertisement

p-Phenylenediamine-grafted multi-walled carbon nanotubes as a hydrophilic modifier in thin-film nanocomposite membrane

  • Mohammad ShokouhianEmail author
  • Sina Solouki
Original Paper
  • 16 Downloads

Abstract

In this paper, an efficient thin-film nanocomposite (TFN) membrane was synthesized by interfacial polymerization and used for water desalination. Piperazine (PIP) and trimesoyl chloride were used as monomers, and p-phenylenediamine-grafted multi-walled carbon nanotube (p-PDA-MWCNT) was used as a hydrophilic modifier to enhance the performance of the polysulfone nanofiltration membrane. In order to characterize the synthesized p-PDA-MWCNTs, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis and electron-dispersive spectroscopy were used. In order to enhance the performance of the membrane, different concentrations of p-PDA-MWCNTs (0.01, 0.02, 0.04, 0.05 and 0.075 wt%) were added to the PIP solution to prepare p-PDA-MWCNTs-embedded membranes. To check the performance of the modified membrane, solutions of 1000 mg L−1 Na2SO4, MgSO4, NaCl and CaCl2 were tested. The results show that TFN-modified membrane provides excellent water permeability and also salt rejection in the presence of 0.02 wt% p-PDA-MWCNTs which shows superior improvement in TFN membrane.

Keywords

Thin-film nanocomposite membrane Interfacial polymerization Para-phenylenediamine-grafted multi-walled carbon nanotube Desalination 

Notes

Acknowledgements

The authors wish to thank the Ferdowsi University of Mashhad for the financial support of the Ph.D. project of Mr. Sina Solouki with the Grant No. of 16589.

References

  1. 1.
    Tasis T, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106(3):1105–1136CrossRefPubMedGoogle Scholar
  2. 2.
    Trojanowicz M (2006) Analytical applications of carbon nanotubes: a review. TrAC Trends Anal Chem 25:480–489CrossRefGoogle Scholar
  3. 3.
    Endo M, Strano MS, Ajayan PM (2007) Potential applications of carbon nanotubes. Springer, BerlinCrossRefGoogle Scholar
  4. 4.
    Szleifer I, Yerushalmi-Rozen R (2005) Polymers and carbon nanotubes-dimensionality, interactions and nanotechnology. Polymer 46:7803–7818CrossRefGoogle Scholar
  5. 5.
    Katz E, Willner I (2004) Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. ChemPhysChem 5:1084–1104CrossRefPubMedGoogle Scholar
  6. 6.
    Sun YP, Fu K, Lin Y, Huang W (2002) Functionalized carbon nanotubes: properties and applications. Acc Chem Res 35:1096–1104CrossRefPubMedGoogle Scholar
  7. 7.
    Yola ML, Atar N (2014) A novel voltammetric sensor based on gold nanoparticles involved in p-aminothiophenol functionalized multi-walled carbon nanotubes: application to the simultaneous determination of quercetin and rutin. Electrochim Acta 119:24–31CrossRefGoogle Scholar
  8. 8.
    Zhang X, Huang Q, Liu M, Tian J, Zeng G, Li Z, Wang K, Zhang Q, Wan Q, Deng F, Wei Y (2015) Preparation of amine functionalized carbon nanotubes via a bioinspired strategy and their application in Cu2+ removal. Appl Surf Sci 343:19–27CrossRefGoogle Scholar
  9. 9.
    Shatat M, Riffat SB (2014) Water desalination technologies utilizing conventional and renewable energy sources. Int J Low Carbon Technol 9:1–19CrossRefGoogle Scholar
  10. 10.
    Pless JD, Philips MLF, Voigt JA, Moore D, Axness M, Krumhansl JL, Nenoff TM (2006) Desalination of brackish waters using ion-exchange media. Ind Eng Chem Res 45:4752–4756CrossRefGoogle Scholar
  11. 11.
    Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P (2009) Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res 43:2317–2348CrossRefPubMedGoogle Scholar
  12. 12.
    Fadigas EAFA, Dias JR (2009) Desalination of water by reverse osmosis using gravitational potential energy and wind energy. Desalination 237:140–146CrossRefGoogle Scholar
  13. 13.
    Diawara CK (2008) Nanofiltration process efficiency in water desalination. Sep Purif Rev 37:302–324CrossRefGoogle Scholar
  14. 14.
    Abuhabib AA, Ghasemi M, Mohammad AW, Rahman RA, El-Shafie AH (2013) Desalination of brackish water using nanofiltration: performance comparison of different membranes. Arab J Sci Eng 38:2929–2939CrossRefGoogle Scholar
  15. 15.
    Sadrzadeh M, Mohammadi T (2009) Treatment of sea water using electrodialysis: current efficiency evaluation. Desalination 249:279–285CrossRefGoogle Scholar
  16. 16.
    Valero F, Arbos R (2010) Desalination of brackish river water using electrodialysis reversal (EDR): control of the THMs formation in the Barcelona (NE Spain) area. Desalination 253:170–174CrossRefGoogle Scholar
  17. 17.
    Song Y, Sun P, Henry LL, Sun B (2005) Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process. J Membr Sci 251:67–79CrossRefGoogle Scholar
  18. 18.
    Gholami A, Moghadassi AR, Hosseini SM, Shabani S, Gholami F (2014) Preparation and characterization of polyvinyl chloride based nanocomposite nanofiltration-membrane modified by iron oxide nanoparticles for lead removal from water. J Ind Eng Chem 20:1517–1522CrossRefGoogle Scholar
  19. 19.
    Kausar A, Siddiq M (2017) Nanofiltration membranes of poly(styrene-co-chloro-methylstyrene)-grafted-DGEBA reinforced with gold and polystyrene nanoparticles for water purification. Appl Water Sci 7:1323–1335CrossRefGoogle Scholar
  20. 20.
    Li JF, Xu ZL, Yang H, Yu LY, Liu M (2009) Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Appl Surf Sci 255:4725–4732CrossRefGoogle Scholar
  21. 21.
    Baghbanzadeh M, Rana D, Matsuura T, Lan CQ (2015) Effects of hydrophilic CuO nanoparticles on properties and performance of PVDF VMD membranes. Desalination 369:75–84CrossRefGoogle Scholar
  22. 22.
    Hu D, Xu ZL, Chen C (2012) Polypiperazine-amide nanofiltration membrane containing silica nanoparticles prepared by interfacial polymerization. Desalination 301:75–81CrossRefGoogle Scholar
  23. 23.
    Wang Q, Zhang GS, Li ZS, Deng S, Chen H, Wang P (2014) Preparation and properties of polyamide/titania composite nanofiltration membrane by interfacial polymerization. Desalination 352:38–44CrossRefGoogle Scholar
  24. 24.
    Vatanpour V, Madaeni SS, Moradian R, Zinadini S, Astinchap B (2011) Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. J Membr Sci 375:284–294CrossRefGoogle Scholar
  25. 25.
    Xu J, Yao P, Li X, He F (2008) Synthesis and characterization of water-soluble and conducting sulfonated polyaniline/para-phenylenediamine-functionalized multi-walled carbon nanotubes nano-composite. Mater Sci Eng B 151:210–219CrossRefGoogle Scholar
  26. 26.
    Zarrabi H, Yekavalangi ME, Vatanpour V, Shockravi A, Safarpour M (2016) Improvement in desalination performance of thin film nanocomposite nanofiltration membrane using amine-functionalized multiwalled carbon nanotube. Desalination 394:83–90CrossRefGoogle Scholar
  27. 27.
    Vatanpour V, Madaeni SS, Moradian R, Zinadini S, Astinchap B (2012) Novel antibifouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes. Sep Purif Technol 90:69–82CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Civil EngineeringFerdowsi University of MashhadMashhadIran

Personalised recommendations