Polymer Bulletin

, Volume 77, Issue 2, pp 975–987 | Cite as

Synthetic talc as catalyst and filler for waterborne polyurethane-based nanocomposite synthesis

  • Guilherme Dias
  • Manoela Prado
  • Christophe Le Roux
  • Mathilde Poirier
  • Pierre Micoud
  • Rosane Ligabue
  • François Martin
  • Sandra EinloftEmail author
Original Paper


In this work, synthetic talc was used as catalyst and filler aiming to obtain waterborne polyurethane (WPU) nanocomposites by in situ polymerization. Filler was used both in gel and in powder forms in order to compare its effects into the WPU matrix. The use of synthetic talc as filler is interesting due to the possibility of hydrogen bond formation between WPU chains/Si–O–Si and OH groups in synthetic talc edges promoting changes in physical, mechanical and thermal properties. Moreover, WPUs are environmentally friendly polymers replacing organic solvents by water as dispersion medium reducing pollutant emission in the atmosphere. Material structure analyzed by FTIR evidenced that it is possible to synthesize WPU using synthetic talc as catalyst and proved hydrogen bonding formation between synthetic talcs and WPU matrix. Synthetic talcs were well dispersed even with higher filler content, as supported by XRD, TEM, FESEM and AFM analyses. Thermal and mechanical performance was improved with synthetic talc fillers’ addition in order to obtain WPU nanocomposites. Also, Tg of WPU nanocomposites was affected by fillers’ addition as presented by DSC corroborating synthetic talc good dispersion as evidenced by XRD and TEM analyses. Synthetic talcs used as catalyst/filler resulted in nanocomposites with superior thermal and mechanical properties being a new path to utilize synthetic talcs to obtain multifunctional materials.


Waterborne polyurethane Synthetic talc In situ polymerization Hydrogen bond 



GD and MP thank CAPES for their PhD scholarship. SE acknowledges CNPq for DT Grant (Number 303467/2015-0). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. Thanks to Nokxeller—Microdispersions by the supply of part of the reagents used in this work.

Supplementary material

289_2019_2789_MOESM1_ESM.docx (622 kb)
Supplementary material 1 (DOCX 622 kb)


  1. 1.
    Chen S, Zhang S, Jin T, Zhao G (2016) Synthesis and characterization of novel covalently linked waterborne polyurethane/Fe3O4 nanocomposite films with superior magnetic, conductive properties and high latex storage stability. Chem Eng J 286:249–258CrossRefGoogle Scholar
  2. 2.
    Hoseini Z, Nikje MMA (2018) Synthesis and characterization of a novel thermally stable water dispersible polyurethane and its magnetic nanocomposites. Iran Polym J 27:733. CrossRefGoogle Scholar
  3. 3.
    Gurunathan T, Mohanty S, Nayak SK (2015) Effect of reactive organoclay on physicochemical properties of vegetable oil-based waterborne polyurethane nanocomposites. RSC Adv 5:11524CrossRefGoogle Scholar
  4. 4.
    Peng L, Zhou L, Li Y, Pan F, Zhang S (2011) Synthesis and properties of waterborne polyurethane/attapulgite nanocomposites. Compos Sci Technol 71:1280–1285CrossRefGoogle Scholar
  5. 5.
    Zhang S, Li Y, Peng L, Li Q, Chen S, Hou K (2013) Synthesis and characterization of novel waterborne polyurethane nanocomposites with magnetic and electrical properties. Compos Part A Appl Sci Manuf 55:94–101. CrossRefGoogle Scholar
  6. 6.
    Chen JJ, Zhu CF, Deng HT et al (2009) Preparation and characterization of the waterborne polyurethane modified with nanosilica. J Polym Res 16:375. CrossRefGoogle Scholar
  7. 7.
    Zhang SW, Liu R, Jiang JQ, Yang C, Chen M, Liu XY (2011) Facile synthesis of waterborne UV-curable polyurethane/silica nanocomposites and morphology, physical properties of its nanostructured films. Prog Org Coat 70:1–8CrossRefGoogle Scholar
  8. 8.
    Peruzzo PJ, Anbinder PS, Pardini FM, Pardini OR, Plivelic TS, Amalvy JI (2016) On the strategies for incorporating nanosilica aqueous dispersion in the synthesis of waterborne polyurethane/silica nanocomposites: effects on morphology and properties. Mater Today Commun 6:81–91CrossRefGoogle Scholar
  9. 9.
    Han Y, Chen Z, Dong W, Xin Z (2015) Improved water resistance, thermal stability, and mechanical properties of waterborne polyurethane nanohybrids reinforced by fumed silica via in situ polymerization. High Perform Polym 27:824–832CrossRefGoogle Scholar
  10. 10.
    Kuan H, Ma CM, Chuang W, Su H (2005) Hydrogen bonding, mechanical properties, and surface morphology of clay/waterborne polyurethane nanocomposites. J Polym Sci B Polym Phys 43:1–12. CrossRefGoogle Scholar
  11. 11.
    Maji PK, Bhowmick AK (2012) Efficacy of clay content and microstructure of curing agents on the structure–property relationship of new-generation polyurethane nanocomposites. Polym Adv Technol 23:1311–1320CrossRefGoogle Scholar
  12. 12.
    Rafiemanzelat F, Adli V, Mallakpour S (2015) Effective preparation of clay/waterborne Azo-containing polyurethane nanocomposite dispersions incorporated anionic groups in the chain termini. Des Mono Polym 18:303–314. CrossRefGoogle Scholar
  13. 13.
    Ramesh S, Punithamurthy K (2017) The effect of organoclay on thermal and mechanical behaviors of thermoplastic polyurethane nanocomposites. Dig J Nanomater Biostruct 12:331–338Google Scholar
  14. 14.
    Gao X, Zhu Y, Zhou S, Gao W, Wang Z, Zhou B (2011) Preparation and characterization of well-dispersed waterborne polyurethane/CaCO3 nanocomposites. Coll Surf A Physicochem Eng Asp 377:312–317. CrossRefGoogle Scholar
  15. 15.
    Demétrio da Silva V, dos Santos LM, Subda SM et al (2013) Synthesis and characterization of polyurethane/titanium dioxide nanocomposites obtained by in situ polymerization. Polym Bull 70:1819. CrossRefGoogle Scholar
  16. 16.
    Soares RR, Carone C, Einloft S et al (2014) Synthesis and characterization of waterborne polyurethane/ZnO composites. Polym Bull 71:829. CrossRefGoogle Scholar
  17. 17.
    Malik M, Kaur R (2018) Mechanical and thermal properties of castor oil-based polyurethane adhesive: effect of TiO2 filler. Adv Polym Technol 37:24–30. CrossRefGoogle Scholar
  18. 18.
    Yousfi M, Livi S, Dumas A, Le Roux C, Crépin-Leblond J, Greenhill-Hooper M, Duchet-Rumeau J (2013) Use of new synthetic talc as reinforcing nanofillers for polypropylene and polyamide 6 systems: thermal and mechanical properties. J Coll Interface Sci 403:29–42CrossRefGoogle Scholar
  19. 19.
    Dumas A, Martin F, Ferrage E, Micoud P, Le Roux C, Petit S (2013) Synthetic talc advances: coming closer to nature, added value, and industrial requirements. Appl Clay Sci 85:8–18CrossRefGoogle Scholar
  20. 20.
    Dias G, Prado MA, Carone C et al (2015) Synthetic silico-metallic mineral particles (SSMMP) as nanofillers: comparing the effect of different hydrothermal treatments on the PU/SSMMP nanocomposites properties. Polym Bull 72:2991. CrossRefGoogle Scholar
  21. 21.
    Prado MA, Dias G, Carone C, Ligabue R, Dumas A, Roux C, Micoud P, Martin F, Einloft S (2015) Synthetic Ni-talc as filler for producing polyurethane nanocomposites. J Appl Polym Sci 132:41854. CrossRefGoogle Scholar
  22. 22.
    dos Santos LM, Ligabue R, Dumas A, Le Roux C, Micoud P, Meunier JF, Martin F, Einloft S (2015) New magnetic nanocomposites: polyurethane/Fe3O4-synthetic talc. Eur Polym J 69:38–49CrossRefGoogle Scholar
  23. 23.
    Dias G, Prado M, Ligabue R, Poirier M, Le Roux C, Martin F, Fery-Forgues S, Einloft S (2018) Synthetic talc as a new platform for producing fluorescent clay polyurethane nanocomposites. Appl Clay Sci 158:37–45CrossRefGoogle Scholar
  24. 24.
    Dias G, Prado M, Ligabue R, Poirier M, Le Roux C, Micoud P, Martin F, Einloft S (2018) Hybrid Pu/synthetic talc/organic clay ternary nanocomposites: thermal, mechanical and morphological properties. Polym Polym Compos 26:127–140Google Scholar
  25. 25.
    Yousfi M, Livi S, Dumas A, Crépin-Leblond J, Greenhill-Hooper M, Duchet-Rumeau J (2014) Compatibilization of polypropylene/polyamide 6 blends using new synthetic nanosized talc fillers: morphology, thermal, and mechanical properties. J Appl Polym Sci 131:40453. CrossRefGoogle Scholar
  26. 26.
    Yousfi M, Livi S, Dumas A, Crépin-Leblond J, Greenhill-Hooper M, Duchet-Rumeau J (2015) Ionic compatibilization of polypropylene/polyamide 6 blends using an ionic liquids/nanotalc filler combination: morphology, thermal and mechanical properties. RSC Adv 5:46197. CrossRefGoogle Scholar
  27. 27.
    Beuguel Q, Ville J, Crepin-Leblond J, Mederic P, Aubry T (2015) Comparative study of the structural and rheological properties of PA6 and PA12 based synthetic talc nanocomposites. Polymer 62:109–117. CrossRefGoogle Scholar
  28. 28.
    Hemlata MSN (2014) Mechanical, morphological, and thermal properties of nanotalc reinforced PA6/SEBS-g-MA composites. J Appl Polym Sci 132:41381. CrossRefGoogle Scholar
  29. 29.
    Dias G, Prado M, Le Roux C, Poirier M, Micoud P, Ligabue R, Martin F, Einloft S (2017) Analyzing the influence of different synthetic talcs in waterborne polyurethane nanocomposites obtainment. J Appl Polym Sci 135:46107. CrossRefGoogle Scholar
  30. 30.
    dos Santos LM, Ligabue R, Dumas A et al (2018) Waterborne polyurethane/Fe3O4-synthetic talc composites: synthesis, characterization, and magnetic properties. Polym Bull 75:1915. CrossRefGoogle Scholar
  31. 31.
    Fernandes IP, Costa MRPFN, Ferreira MJ, Barreiro MF (2015) Water-based poly(urethane-urea) dispersions—meeting the European Union legislation. Polymery 60:536–540. CrossRefGoogle Scholar
  32. 32.
    Le Roux C, Martin F, Micoud P, Dumas A (2013) Process for preparing a composition comprising synthetic mineral particles and composition. Int. Pat. WO 2013/004979 A1Google Scholar
  33. 33.
    Zhang M, Hui Q, Lou XJ, Redfern SAT, Salje EKH, Tarantino SC (2006) Dehydroxylation, proton migration, and structural changes in heated talc: an infrared spectroscopic study. Am Miner 91:816–825. CrossRefGoogle Scholar
  34. 34.
    Martin F, Micoud P, Delmotte L, Marichal CL, Dred RD, Parseval P, Mari A, Fortune JP, Salvi S, Beziat D, Ferret OG (1999) The structural formula of talc from the Trimouns deposit, Pyrenees, France. J Can Miner 37:997Google Scholar
  35. 35.
    Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRefGoogle Scholar
  36. 36.
    Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204CrossRefGoogle Scholar
  37. 37.
    Hajializadeh S, Barikani M, Bellah SM (2017) Synthesis and characterization of multiwall carbon nanotube/waterborne polyurethane nanocomposites. Polym Int 66:1074–1083. CrossRefGoogle Scholar
  38. 38.
    Castillo LA, Barbosa SE, Capiati NJ (2013) Influence of talc morphology on the mechanical properties of talc filled polypropylene. J Polym Res 20:152. CrossRefGoogle Scholar
  39. 39.
    Han W (2013) Synthesis and properties of networking waterborne polyurethane/silica nanocomposites by addition of poly(ester amine) dendrimer. Polym Compos 34:156. CrossRefGoogle Scholar
  40. 40.
    Dumas A, Martin F, Le Roux C et al (2013) Phyllosilicates synthesis: a way of accessing edges contributions in NMR and FTIR spectroscopies. Example of synthetic talc. Phys Chem Miner 40:361. CrossRefGoogle Scholar
  41. 41.
    Romo-Uribe A, Santiago-Santiago K, Zavala-Padilla G, Reyes-Mayer A, Calixto-Rodriguez M, Arcos-Casarrubias JA, Baghdachi J (2016) Waterborne layered silicate/acrylate nanocomposites by in situ emulsion polymerization: thermal and mechanical reinforcement. Prog Org Coat 101:59–70CrossRefGoogle Scholar
  42. 42.
    Wu Y, Du Z, Wang H, Cheng X (2016) Preparation of waterborne polyurethane nanocomposite reinforced with halloysite nanotubes for coating applications. J Appl Polym Sci. CrossRefGoogle Scholar
  43. 43.
    Santamaria-Echart A, Ugarte L, García-Astrain C, Arbelaiz A, Corcuera MA, Eceiza A (2016) Cellulose nanocrystals reinforced environmentally-friendly waterborne polyurethane nanocomposites. Carbohydr Polym 151:1203–1209CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Post-Graduation Program in Materials Engineering and TechnologyPontifical Catholic University of Rio Grande do Sul – PUCRSPorto AlegreBrazil
  2. 2.School of SciencePontifical Catholic University of Rio Grande do Sul – PUCRSPorto AlegreBrazil
  3. 3.School of TechnologyPontifical Catholic University of Rio Grande do Sul – PUCRSPorto AlegreBrazil
  4. 4.ERT Géomatériaux, GETUniversité de Toulouse, CNRS, IRD, UPSToulouseFrance

Personalised recommendations