Polymer Bulletin

, Volume 77, Issue 2, pp 989–1001 | Cite as

Microencapsulation of 2-phenyl ethanol with methylcellulose/alginate/methylcellulose as the wall material and stability of the microcapsules

  • Bining Qiu
  • Hua Tian
  • Xueqiong YinEmail author
  • You Zhou
  • Li Zhu
Original Paper


In this study, 2-phenyl ethanol (2-PEA) was microencapsulated with natural and semisynthetic carbohydrate polymers as the wall material. The wall material components methylcellulose (MC), alginate sodium (ALG), and carboxymethyl chitosan were optimized according to the results of microscopy images, zeta potential, and 2-PEA content. The combination of MC/ALG/MC was selected as the best wall components. Cobalt chloride (CoCl2) was used as the core material to prepare microcapsules whose color was measured with a colorimeter to intuitively express the water absorption of the microcapsules. The absorbed water mass and b* were related to one variable quadratic equation. The rapid release properties and the natural long-term release properties of 2-PEA microcapsules were measured.


2-Phenyl ethanol Microencapsulation Methylcellulose CoCl2 microcapsules Stability 



The authors acknowledge the Key research and development plan of Hainan Province (ZDYF2018232) and the National Science Foundation of China (Project No. 21466011) for financial support.


  1. 1.
    Adamiec J (2009) Moisture sorption characteristics of peppermint oil microencapsulated by spray drying. Drying Technol 27(12):1363–1369CrossRefGoogle Scholar
  2. 2.
    Cortés-Camargo S, Cruz-Olivares J, Barragán-Huerta BE, Dublán-García O, Román-Guerrero A, Pérez-Alonso C (2017) Microencapsulation by spray drying of lemon essential oil: evaluation of mixtures of mesquite gum-nopal mucilage as new wall materials. J Microencapsul 34:395–407PubMedCrossRefGoogle Scholar
  3. 3.
    Fischer N, Haerdtl R, Mcdonald PJ (2015) Observation of the redistribution of nanoscale water filled porosity in cement based materials during wetting. Cem Concr Res 68:148–155CrossRefGoogle Scholar
  4. 4.
    Friesen DT, Shanker R, Crew M, Smithey DT, Curatolo WJ, Nightingale JAS (2008) Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: an overview. Mol Pharm 5(6):1003–1019CrossRefGoogle Scholar
  5. 5.
    Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R (2007) Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Res Int 40(9):1107–1121CrossRefGoogle Scholar
  6. 6.
    Gutiérrez TJ, Álvarez K (2017) Chapter 6. Biopolymers as microencapsulation materials in the food industry. In: Masuelli M, Renard D (eds) Advances in physicochemical properties of biopolymers: part 2. Bentham Science Publishers. EE.UU. ISBN: 978-1-68108-545-6. eISBN: 978-1-68108-544-9, 2017. pp 296–322.
  7. 7.
    Han GT, Yang ZM, Peng Z, Wang G, Zhou M, Pang YX, Li PW (2013) Preparation and properties analysis of slow-release microcapsules containing patchouli oil. Oil Adv Mater Res 641–642(1):935–938CrossRefGoogle Scholar
  8. 8.
    Hans ML, Lowman AM (2002) Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci 6(4):319–327CrossRefGoogle Scholar
  9. 9.
    Jafari SM, Assadpoor E, Bhandari YHB (2008) Encapsulation efficiency of food flavours and oils during spray drying. Dry Technol 26(7):816–835CrossRefGoogle Scholar
  10. 10.
    Kang A, Son SA, Hur B, Kwon YH, Ro JH, Park JK (2012) The color stability of silorane- and methacrylate-based resin composites. Dent Mater J 31(5):879–884PubMedCrossRefGoogle Scholar
  11. 11.
    Koji N, Hideyuki M, Yutaka K, Rintaro I, Toshiji K, Koichiro S, Hideki S (2017) Salting-out and salting-in effects of amphiphilic salt on cloud point of aqueous methylcellulose. Process Biochem 59(A):52–57Google Scholar
  12. 12.
    Madene A, Jacquot M, Scher J, Desobry S (2006) Flavour encapsulation and controlled release: a review. Int J Food Sci Technol 41(1):1–21CrossRefGoogle Scholar
  13. 13.
    Mahdjoub H, Roy P, Filiatre C, Bertrand G, Coddet C (2003) The effect of the slurry formulation upon the morphology of spray-dried yttria stabilised zirconia particles. J Eur Ceram Soc 23(10):1637–1648CrossRefGoogle Scholar
  14. 14.
    Pereda M, Amica G, Marcovich NE (2012) Development and characterization of edible chitosan/olive oil emulsion films. Carbohydr Polym 87(2):1318–1325CrossRefGoogle Scholar
  15. 15.
    Rodea-González DA, Cruz-Olivares J, Román-Guerrero A, Rodríguez-Huezo ME, Vernon-Carter EJ, Pérez-Alonso C (2012) Spray-dried encapsulation of chia essential oil (Salvia hispanica L.) in whey protein concentrate-polysaccharide matrices. J Food Eng 111(1):102–109CrossRefGoogle Scholar
  16. 16.
    Saénz C, Tapia S, Chávez J, Robert P (2009) Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntia ficus-indica). Food Chem 114(2):616–622CrossRefGoogle Scholar
  17. 17.
    Shuji AH, Yuri H, Ryuichi M (2013) Preparation of a water-in-oil-in-water (W/O/W) type microcapsules by a single-droplet-drying method and change in encapsulation efficiency of a hydrophilic substance during storage. Biosci Biotechnol Biochem 106(4):225–231Google Scholar
  18. 18.
    Siriprom W, Kongsriprapan S, Teanchai K (2014) Thermal and structural of methyl cellulose. Adv Mater Res 979:307–310CrossRefGoogle Scholar
  19. 19.
    Tieman D, Taylor M, Schauer N, Fernie AR, Hanson AD, Klee HJ (2006) Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proc Natl Acad Sci USA 103(21):8287–8292PubMedCrossRefGoogle Scholar
  20. 20.
    Timilsena YP, Wang B, Adhikari R, Adhikari B (2017) Advances in microencapsulation of polyunsaturated fatty acids (PUFAs)-rich plant oils using complex coacervation: a review. Food Hydrocoll 69:369–381CrossRefGoogle Scholar
  21. 21.
    Verdalet-Guzmán I, Martínez-Ortiz L, Martínez-Bustos F (2013) Characterization of new sources of derivative starches as wall materials of essential oil by spray drying. Food Sci Technol 33(4):757–764CrossRefGoogle Scholar
  22. 22.
    Wang J, Zhang S, Xing T, Kundu B, Li M, Kundu SC, Lu SZ (2015) Ion-induced fabrication of silk fibroin nanoparticles from Chinese oak tasar Antheraea pernyi. Int J Biol Macromol 79:316–325PubMedCrossRefGoogle Scholar
  23. 23.
    Yadav GD, Lawate YS (2013) Hydrogenation of styrene oxide to 2-phenyl ethanol over polyurea microencapsulated mono- and bimetallic nanocatalysts: activity, selectivity, and kinetic modeling. Ind Eng Chem Res 52(11):4027–4039CrossRefGoogle Scholar
  24. 24.
    Yang QY, Xiao ZG, Zhao Y, Liu CJ, Xu Y, Bai JK (2015) Effect of extrusion treatment with different emulsifiers on the thermal stability and structure of corn starch. Czech J Food Sci 33(5):464–473CrossRefGoogle Scholar
  25. 25.
    Yang XL, Ju XJ, Mu XT, Wang W, Xie R, Liu Z, Chu LY (2016) Core–shell chitosan microcapsules for programmed sequential drug release. ACS Appl Mater Interfaces 8(16):10524–10534PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang S, Chen J, Yin XQ, Wang XY, Qiu BN, Zhu L, Lin Q (2017) Microencapsulation of tea tree oil by spray-drying with methyl cellulose as the emulsifier and wall material together with chitosan/alginate. J Appl Polym Sci 134(13):44662CrossRefGoogle Scholar
  27. 27.
    Zuzarte M, Gonçalves MJ, Cruz MT, Cavaleiro C, Canhoto J, Vaz S, Pinto E, Salgueiro L (2012) Lavandula luisieri essential oil as a source of antifungal drugs. Food Chem 135(3):1505–1510PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hainan Provincial Fine Chemical Engineering Research CenterHainan UniversityHaikouPeople’s Republic of China

Personalised recommendations