Advertisement

Polymer Bulletin

, Volume 77, Issue 2, pp 949–962 | Cite as

The role of gold nanoparticles in the structural and electrical properties of Cs/PVP blend

  • I. S. ElashmawiEmail author
  • Nadia H. Elsayed
Original Paper
  • 63 Downloads

Abstract

Pure gold nanoparticles (AuNPs) were prepared using a laser ablation technique. Nanocomposite films of chitosan (Cs) and polyvinyl pyrrolidone PVP blend embedded different concentrations of pure gold nanoparticles were prepared by the casting method. The structural, morphological, thermal and electrical properties of Cs/PVP–AuNPs nanocomposite were characterized and investigated before and after adding gold nanoparticles. The X-ray diffraction revealed the degree of crystallinity of Cs/PVP blend was decreased after the addition of gold nanoparticles. The intensity of some IR bands was changed due to the chemical interaction between the blend and AuNPs. Transmission electron microscope images of the samples which contain the gold nanoparticles show the spherical particles of nanogold with a size range nearly 5–30 nm. The thermogravimetric (TG) analysis shows an enhancement of the thermal stability of the films after the addition of AuNPs. The activation energy was calculated from the TG curves using Coats–Redfern and Broido methods. The AC electrical properties were studied from 100 Hz to 5 MHz with different temperatures. The values for dielectric constant (ε′) and dielectric loss (ε″) were decreased with an increase in both frequency and temperature.

Keywords

AuNPs CS/PVA blend X-ray TEM AC conductivity 

Notes

References

  1. 1.
    Hanemann T, Szabo DV (2010) Polymer-nanoparticle composites: from synthesis to modern applications. Materials 3:3468–3517CrossRefGoogle Scholar
  2. 2.
    Maniar KK (2004) Polymeric nanocomposites: a review. Polym Plast Technol Eng 43:427–443CrossRefGoogle Scholar
  3. 3.
    Abdelghany A, Adelrazek EM, Badr SI, Abdel-Aziz M, Morsi MA (2017) Effect of Gamma-irradiation on biosynthesized gold nanoparticles using Chenopodium murale leaf extract. J Saudi Chem Soc 21:528–537CrossRefGoogle Scholar
  4. 4.
    Adelrazek EM, Abdelghany A, Badr SI, Morsi MA (2018) Structural, optical, morphological and thermal properties of PEO/PVP blend containing different concentrations of biosynthesized Au nanoparticles. J Mater Res Technol 7:419–431CrossRefGoogle Scholar
  5. 5.
    Yu J, Wang X, Li Y, Huang X, Luo X, He X (2018) Synthesis of nerolidol functionalized Gold nanoparticles for wound regeneration in people with diabetic foot ulcers in nursing care management. Sci Adv Mater 10:1775CrossRefGoogle Scholar
  6. 6.
    Krishna N, Kumar GN, Neethu T, John R, Babu, Chandran SS (2018) One pot green synthesis of Silver nanoparticles with multiple applications. Mater Today Proc 5:20567–20571CrossRefGoogle Scholar
  7. 7.
    Abdelghany AM, Adelrazek EM, Badr SI, Morsi MA (2016) Effect of gamma-irradiation on (PEO/PVP)/Au nanocomposite: materials for electrochemical and optical applications. Mater Des 97:532–543CrossRefGoogle Scholar
  8. 8.
    Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204CrossRefGoogle Scholar
  9. 9.
    Rajeh A, Mrsi MA, Elashmawi IS (2019) Enhancement of spectroscopic, thermal, electrical and morphological properties of polyethylene oxide/carboxymethyl cellulose blends: combined FT-IR/DFT. Vacuum 159:430–440CrossRefGoogle Scholar
  10. 10.
    Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 1:1–39CrossRefGoogle Scholar
  11. 11.
    Archana D, Singh BK, Dutta J, Dutta PK (2013) In vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material. Carbohydr Polym 95(530):539Google Scholar
  12. 12.
    Abdelrazek EM, Elashmawi IS, Labeeb S (2010) Chitosan filler effects on the experimental characterization, spectroscopic investigation and thermal studies of PVA/PVP blend films. Phys B Condens Matter 405:2021–2027CrossRefGoogle Scholar
  13. 13.
    Morsi MA, Abdelghany AM (2017) UV-irradiation assisted control of the structural, optical and thermal properties of PEO/PVP blended gold nanoparticles. Mater Chem Phys 201:100–112CrossRefGoogle Scholar
  14. 14.
    Demirci S, Alaslan A, Caykara T (2009) Preparation, characterization and surface pKa values of poly(N-vinyl-2-pyrrolidone)/chitosan blend films. Appl Surf Sci 255:5979–5983CrossRefGoogle Scholar
  15. 15.
    Ayesh SA (2010) Electrical and optical characterization of PMMA doped with Y0.0025Si0.025Ba0.9725(Ti(0.9)Sn0.1)O3 ceramic. Chin J Polym Sci 28:537–546CrossRefGoogle Scholar
  16. 16.
    Buyukukozturk O, Yu TY, Ortega JA (2006) A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements. Cem Concr Compos 28:349–359CrossRefGoogle Scholar
  17. 17.
    Dwivedi AD, Gopal K (2010) Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Coll Surf A Physicochem Eng Asp 369:27–33CrossRefGoogle Scholar
  18. 18.
    Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of water in semicrystalline poly(vinyl alcohol) films. Polymer 37:1371–1376CrossRefGoogle Scholar
  19. 19.
    Mohamad AK, Mohamed AA, Yahya NS, Othman MZA, Ramesh R, Alias S, Arof Y (2003) Ionic conductivity studies of poly(vinyl alcohol) alkaline solid polymer electrolyte and its use in nickel–zinc cells. Solid State Ion 156:171–177CrossRefGoogle Scholar
  20. 20.
    Zakaria A, Izzah Z, Jawaid Z, Hassan M (2012) Effect of degree of deacetylation of chitosan on thermal stability and compatibility of chitosan–polyamide blend. BioResources 7:5568–5580CrossRefGoogle Scholar
  21. 21.
    Archana PK, Singh D, Dutta BK, Dutta J (2015) Chitosan–PVP-nano silver oxide wound dressing: in vitro and in vivo evaluation. Int J Biol Macromol 73:49–57CrossRefGoogle Scholar
  22. 22.
    Kim KS, Park SJ (2011) Influence of amine-grafted multi-walled carbon nanotubes on physical and rheological properties of PMMA-based nanocomposites. J Sol State Chem 184:3021–3027CrossRefGoogle Scholar
  23. 23.
    Kamal M, Hezma AM, Elashmawia IS, Abdelrazekb EM, Rajeh A (2017) Enhancement of the thermal and mechanical properties of polyurethane/polyvinyl chloride blend by loading single walled carbon nanotubes. Prog Nat Sci 27:338–343CrossRefGoogle Scholar
  24. 24.
    Broido A, Simple A (1969) A simple, sensitive graphical method of treating thermogravimetric analysis data. J Polym Sci Part A-2 7:1761–1773CrossRefGoogle Scholar
  25. 25.
    Elashmawi IS, Abdelrazek EM, Hezma AM, Rajeh A (2014) Modification and development of electrical and magnetic properties of PVA/PEO incorporated with MnCl2. Phys B Condens Matter 434:57–63CrossRefGoogle Scholar
  26. 26.
    Dutta P, Biswas S, Ghosh M, De SK, Chatterjee S (2001) The DC and AC conductivity of polyaniline–polyvinyl alcohol blends. Synth Met 122:455–461CrossRefGoogle Scholar
  27. 27.
    de Oliveira HP, dos Santos MVB, dos Santos CG, de Melo CP (2003) Preparation and electrical and dielectric characterization of PVA/PPY blends. Mater Char 50:223–226CrossRefGoogle Scholar
  28. 28.
    Abdelrazek EM, Elashmawi IS, Hezma AM, Rajeh A, Kamal M (2016) Effect of an encapsulate carbon nanotubes (CNTs) on structural and electrical properties of PU/PVC nanocomposites. Phys B Condens Matter 502:48–55CrossRefGoogle Scholar
  29. 29.
    Psarras CAKGC, Gatos KG, Karahaliou PK, Georga SN, Karger Kocsis J (2007) Relaxation phenomena in rubber/layered silicate nanocomposites. Express Polym Lett 1:837–845CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics Department, Faculty of Science, Al-UlaTaibah UniversityMadinahKingdom of Saudi Arabia
  2. 2.Spectroscopy Department, Physics DivisionNational Research CentreCairoEgypt
  3. 3.Department of Polymers and PigmentsNational Research CentreCairoEgypt
  4. 4.Chemistry Department, University College-AlwajhTabuk UniversityTabukKingdom of Saudi Arabia

Personalised recommendations