Advertisement

Thermo-sensitive gellan maleate/N-isopropylacrylamide hydrogels: initial “in vitro” and “in vivo” evaluation as ocular inserts

  • Mihaela Hamcerencu
  • Jacques DesbrieresEmail author
  • Marcel PopaEmail author
  • Gérard Riess
Original Paper
  • 11 Downloads

Abstract

Hydrogels are among the most used polymer–drug systems, polysaccharide-based materials presenting many advantages to be used for controlled release applications. Gellan maleate/NIPAm hydrogels are hydrophilic swelling matrixes that were originally developed for biomedical applications as controlled release dosage forms. The purpose of this study is to explore the ability of gellan maleate/NIPAm thermoreversible hydrogels for ophthalmic applications as ocular inserts. Studied hydrogels were synthesized by free radical grafting/polymerization of unsaturated esters (gellan maleate) with N-isopropylacrylamide (NIPAm) and N,N′-methylenebisacrylamide as cross-linker. They are evaluated for swelling degree, in vitro inclusion and release of drugs (adrenaline and chloramphenicol) and in vivo biocompatibility. The hydrogel is shown to be a temperature-responsive material with a LCST close to 36 °C. The swelling properties and the release of biologically active compounds occur when polymer conformation changes determining phase transition at LCST. Gellan-based hydrogels present reproducible responses to alternation between ambient temperature and human body one. The stability and biocompatibility were evaluated in vitro and in vivo. Tissue response to implantation of hydrogel was determined by histological analysis (haematoxylin–eosin–methylene blue and periodic acid–Schiff). A thin fibrous capsule was observed around the implanted hydrogels. No necrosis, calcification and acute inflammatory reaction were noted. Successful preliminary results were obtained for ophthalmic applications.

Keywords

Hydrogels Gellan N-Isopropylacrylamide (NIPAm) Ocular inserts Temperature sensitive Ophthalmic applications 

Notes

Acknowledgements

The authors would like to thank the Agence Universitaire de la Francophonie (AUF), for financial support. Prof. Dr. Corneliu Cotea from Ion Ionescu de la Brad University of Agricultural Sciences and Veterinary Medicine of Iași is acknowledged for biocompatibility experiments.

References

  1. 1.
    Dayle H, Geroski DH, Edelhauser HF (2000) Drug delivery for posterior segment eye disease. Invest Ophthalmol Vis Sci 41:961–964Google Scholar
  2. 2.
    Lang JC (1995) Ocular drug delivery: conventional ocular formulations. Adv Drug Deliv Rev 16:39–43CrossRefGoogle Scholar
  3. 3.
    Peptu CA, Popa M, Savin C, Popa RF, Ochiuz L (2015) Modern drug delivery systems for targeting the posterior segment of the eye. Curr Pharm Des 21:6055–6069CrossRefGoogle Scholar
  4. 4.
    Cadinoiu AN, Peptu CA, Fache B, Chailan JF, Popa M (2015) Microparticulated systems based on chitosan and poly (vinyl alcohol) with potential ophthalmic applications. J Microencapsul 32:381–389CrossRefGoogle Scholar
  5. 5.
    Andrei G, Peptu CA, Popa M, Desbrieres J, Peptu C, Gardikiotis F, Costuleanu M, Costin D, Dupin JC, Uhart A, Tamba BI (2015) Formulation and evaluation of cefuroxim loaded submicron particles for ophthalmic delivery. Int J Pharm 493:16–29CrossRefGoogle Scholar
  6. 6.
    Bin Suhaime IH, Tripathy M, Majeed ABA (2012) Environment sensitive polymers for ophthalmic drug delivery. Int J Pharm BioSci 3:586–608Google Scholar
  7. 7.
    Dewan M, Sarkar G, Bhowmik M, Das B, Chattoapadhyay AK, Rana D, Chattopadhyay D (2017) Effect of gellan gum on the thermogelation property and drug release profile of Poloxamer 407 based ophthalmic formulation. Int J Biol Macromol 102:258–265CrossRefGoogle Scholar
  8. 8.
    Gambhire S, Bhalerao K, Singh S (2013) In situ hydrogel: different approaches to ocular drug delivery. Int J Pharm Pharm Sci 5:27–36Google Scholar
  9. 9.
    Fernandez-Ferreiro A, Barcia MG, Gil-Martinez M, Vieites-Prado A, Lema I, Argibay B, Mendez JB, Lamas MJ, Otero-Espinar FJ (2015) In vitro and in vivo ocular safety and eye surface permanence determination by direct and Magnetic Resonance Imaging of ion-sensitive hydrogels based on gellan gum and kappa-carrageenan. Eur J Pharm Biopharm 94:342–351CrossRefGoogle Scholar
  10. 10.
    Ding S (1998) Recent developments in ophthalmic drug delivery. Pharm Sci Technol Today 1:328–335CrossRefGoogle Scholar
  11. 11.
    Jansson PE, Lindberg B, Sandford PA (1983) Structural studies of gellan gum, an extracellular polysaccharide elaborated by Pseudomonas elodea. Carbohydr Res 124:135–139CrossRefGoogle Scholar
  12. 12.
    Crescenzi V, Dentini M, Coviello T (1990) Solution and gelling properties of microbial polysaccharides of industrial interest: the case of gellan. In: Dawes EA (ed) Novel Biodegradable Microbial Polymers. Kluwer Academic Publishers, The Netherlands, pp 227–284Google Scholar
  13. 13.
    Milas M, Rinaudo M (1996) The gellan sol–gel transition. Carbohydr Polym 30:177–184CrossRefGoogle Scholar
  14. 14.
    Ogawa E, Matsuzawa H, Iwahashi M (2002) Conformational transition of gellan gum of sodium, lithium, and potassium types in aqueous solutions. Food Hydrocoll 16:1–9CrossRefGoogle Scholar
  15. 15.
    Takahashi R, Tokunou H, Kubota K, Ogawa E, Oida T, Kawase T, Nishinari K (2004) Solution properties of gellan gum: change in chain stiffness between single- and double-stranded chains. Biomacromolecules 5:516–523CrossRefGoogle Scholar
  16. 16.
    Balasubramaniam J, Pandit JK (2002) In vitro characterization of a non-degradable scleral implant of indomethacin for prolonged ocular delivery. Acta Pharm 52:181–188Google Scholar
  17. 17.
    Mukai-Correa R, Prata AS, Alvim ID, Grosso CRF (2004) Controlled release of protein from hydrocolloid gel microbeads before and after drying. Curr Drug Deliv 1:265–273CrossRefGoogle Scholar
  18. 18.
    Ottoboni TB, Ronald YK, Stanley CR (2000) Intravesical drug delivery, U.S. Patent 6207180Google Scholar
  19. 19.
    Balasubramaniam J, Kumar MT, Pandit JK, Kant S (2004) Gellan-based scleral implants of indomethacin: in vitro and in vivo evaluation. Drug Deliv 11:371–379CrossRefGoogle Scholar
  20. 20.
    Rozier A, Mazuel C, Grove J, Plazonnet B (1989) Gelrite®: a novel, ion-activated, in situ gelling polymer for ophthalmic vehicles. Effect on bioavailability of timolol. Int J Pharm 57:163–168CrossRefGoogle Scholar
  21. 21.
    Rozier A, Mazuel C, Grove J, Plazonnet B (1997) Functionality testing of gellan gum, a polymeric excipient material for ophthalmic dosage forms. Int J Pharm 153:191–198CrossRefGoogle Scholar
  22. 22.
    Kesarla R, Tank T, Vora PA, Shah T, Parmar S, Omri A (2016) Preparation and evaluation of nanoparticles loaded ophthalic in situ gel. Drug Deliv 23:2363–2370Google Scholar
  23. 23.
    Ranch K, Patel H, Chavda L, Koli A, Maulvi F, Parikh RK (2017) Development of in situ ophthalmic gel of dexamethasone sodium phosphate and chloramphenicol: a viable alternative to conventional eye drops. J Appl Pharm Sci 7:101–108Google Scholar
  24. 24.
    Crescenzi V, Dentini MV, Dea ICM (1987) The influence of side-chains on the dilute-solution properties of three structurally related, bacterial anionic polysaccharides. Carbohydr Res 160:283–302CrossRefGoogle Scholar
  25. 25.
    LeRoux MA, Guilak F, Setton LA (1999) Compressive and shear properties of alginate gel: effects of sodium ions and alginate concentration. J Biomed Mater Res 47:46–53CrossRefGoogle Scholar
  26. 26.
    Garcia MC, Alfaro MC, Calero N, Munoz J (2011) Influence of gellan gum concentration on the dynamic viscoelasticity and transient flow of fluid gels. Biochem Eng J 55:73–81CrossRefGoogle Scholar
  27. 27.
    Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57:19–34CrossRefGoogle Scholar
  28. 28.
    Zhang G, Wu C (2001) Re-entrant coil-to-globule-to-coil transition of a single linear homopolymer chain in a water/methanol mixture Phys. Rev Lett 86:822–825CrossRefGoogle Scholar
  29. 29.
    Deshmukh S, Mooney DA, McDermott T, Kulkarni S, Don MacElroy JM (2009) Molecular modelling of thermo-responsive hydrogels: observation of lower critical solution temperature. Soft Mater 5:1514–1521CrossRefGoogle Scholar
  30. 30.
    Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A (2013) Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Rev 65:1148–1171CrossRefGoogle Scholar
  31. 31.
    Hamcerencu M, Desbrieres J, Khoukh A, Popa M, Riess G (2008) Synthesis and characterization of new unsaturated esters of gellan gum. Carbohydr Polym 71:92–100CrossRefGoogle Scholar
  32. 32.
    Hamcerencu M, Desbrieres J, Popa M, Riess G (2009) Stimuli-sensitive xanthan derivatives/N-isoprpylacrylamide hydrogels: influence of crosslinking agent on interpenetrating polymer network properties. Biomacromolecules 10:1911–1922CrossRefGoogle Scholar
  33. 33.
    Hamcerencu M, Popa M, Desbrieres J, Riess G (2010) Thermosensitive microparticles based on unsaturated esters of some poly- and oligosaccharides: preparation, characterization, drug inclusion and release. Macromol Symp 197:114–125CrossRefGoogle Scholar
  34. 34.
    Hamcerencu M, Desbrieres J, Khoukh A, Popa M, Riess G (2011) Thermodynamic investigation of thermoresponsive xanthan-poly(N-isopropylacrylamide) hydrogels. Polym Int 60:1527–1534CrossRefGoogle Scholar
  35. 35.
    Mundargi RC, Shelke NB, Babu VR, Patel P, Rangaswamy V, Aminabhavi TM (2010) Novel thermo-responsive semi-interpenetrating network microspheres of gellan gum-poly(N-isopropylacrylamide) for controlled release of atenolol. J Appl Polym Sci 116:1832–1841Google Scholar
  36. 36.
    Hamcerencu M, Desbrieres J, Popa M, Riess G (2012) Original stimuli-sensitive polysaccharide derivatives/N-isopropylacrylamide hydrogels. Role of polysaccharide backbone. Carbohydr Polym 89:438–447CrossRefGoogle Scholar
  37. 37.
    An YH, Woolf SK, Friedman RJ (2000) Pre-clinical in vivo evaluation of orthopaedic bioabsorbable devices. Biomaterials 21:2635–2652CrossRefGoogle Scholar
  38. 38.
    An YH, Friedman RJ (1998) Animal models in orthopaedic research. CRC Press, Boca RatonGoogle Scholar
  39. 39.
    Cotea C (2003) Histologie specială, Ed. Tehnopress, IaşiGoogle Scholar
  40. 40.
    Zhang X, Wu D, Chu CC (2004) Synthesis and characterization of partially biodegradable, temperature and pH sensitive Dex–MA/PNIPAAm hydrogels. Biomaterials 25:4719–4730CrossRefGoogle Scholar
  41. 41.
    Shibayama M, Kawakubo K, Norisuye T (1998) Comparison of the experimental and theoretical structure factors of temperature sensitive polymer gels. Macromolecules 31:1608–1614CrossRefGoogle Scholar
  42. 42.
    Zhang XZ, Yang YY, Chung TS (2002) Effect of mixed solvents on characteristics of poly (N-isopropylacrylamide) gels. Langmuir 18:2538–2542CrossRefGoogle Scholar
  43. 43.
    Vernon B, Kim SW, Bae YH (2000) Thermoreversible copolymer gels for extracellular matrix. J Biomed Mater Res 51:69–79CrossRefGoogle Scholar
  44. 44.
    Shibayama M, Fujikawa Y, Nomura S (1996) Dynamic light scattering study of poly (N-isopropylacrylamide-co-acrylic acid) gels. Macromolecules 29:6535–6540CrossRefGoogle Scholar
  45. 45.
    Bruscolini P, Buzano C, Pelizzola A, Pretti M (2002) Lattice model for polymer hydration: collapse of poly(N-isopropylacrylamide). Macromol Symp 181:261–273CrossRefGoogle Scholar
  46. 46.
    Ju XJ, Chu LY, Zhu XL, Hu L, Song H, Chen WM (2006) Effects of internal microstructures of poly(N-isopropylacrylamide) hydrogels on thermo-responsive volume phase-transition and controlled-release characteristics. Smart Mater Struct 15:1767–1774CrossRefGoogle Scholar
  47. 47.
    Shibayama M, Morimoto M, Nomura S (1994) Phase separation induced mechanical transition of poly(N-isopropylacrylamide)/water isochore gels. Macromolecules 27:5060–5066CrossRefGoogle Scholar
  48. 48.
    Mikheeva LM, Grinberg NV, Mashkevich AY, Grinberg VY, Thanh LTM, Makhaeva EE, Khokhlov AR (1997) Microcalorimetric study of thermal cooperative transitions in poly(N-vinylcaprolactam) hydrogels. Macromolecules 30:2693–2699CrossRefGoogle Scholar
  49. 49.
    Shibayama M, Mizutani M, Nomura S (1996) Thermal properties of copolymer gels containing N-isopropylacrylamide. Macromolecules 29:2019–2024CrossRefGoogle Scholar
  50. 50.
    Shibayama M, Suetoh Y, Nomura S (1996) Structure relaxation of hydrophobically aggregated poly(n-isopropylacrylamide) in water. Macromolecules 29:6966–6968CrossRefGoogle Scholar
  51. 51.
    Lutolf MP, Hubbel JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55CrossRefGoogle Scholar
  52. 52.
    Cho ER, Kang SW, Kim BS (2005) Poly(lactic-co-glycolic acid) microspheres as a potential bulking agent for urological injection therapy: preliminary results. J Biomed Mater Res B Appl Biomater 72:166–172CrossRefGoogle Scholar
  53. 53.
    Peppas NA, Lang R (1994) New challenges in biomaterials. Science 263:1715–1720CrossRefGoogle Scholar
  54. 54.
    Balan V, Verestiuc L (2014) Strategies to improve chitosan hemocompatibility: a review. Eur Polym J 53:171–188CrossRefGoogle Scholar
  55. 55.
    Ro Hynes (1987) Integrins: a family of cell surface receptors. Cell 48:549–554CrossRefGoogle Scholar
  56. 56.
    Gombotz WR, Pettit DK (1995) Biodegradable polymers for protein and peptide drug delivery. Bioconjugate Chem 6:332–351CrossRefGoogle Scholar
  57. 57.
    Chen RR, Mooney DJ (2003) Polymeric growth factor delivery strategies for tissue engineering. Pharm Res 20:1103–1112CrossRefGoogle Scholar
  58. 58.
    Gunzburg WH, Salmons B (2005) Use of cell therapy as a means of targeting chemotherapy to inoperable pancreatic cancer. Acta Biochim Pol 52:601–607Google Scholar
  59. 59.
    Yoshida R, Uchida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, Okano T (1995) Comb-type grafted hydrogels with rapid de-swelling response to temperature changes. Nature 374:240–242CrossRefGoogle Scholar
  60. 60.
    Stile RA, Burghardt WR, Healy KE (1999) Synthesis and characterization of injectable poly(N-isopropylacrylamide)-based hydrogels that support tissue formation in vitro. Macromolecules 32:7370–7379CrossRefGoogle Scholar
  61. 61.
    Zhang JT, Huang SW, Liu J, Zhuo RX (2005) Temperature sensitive poly[N-isopropylacrylamideco-(acryloyl β-cyclodextrin)] for improved drug release. Macromolecular Bioscience 5:192–196CrossRefGoogle Scholar
  62. 62.
    Zhang Q, Chen L, Dong Y, Lu S (2013) Temperature-sensitivity and cell biocompatibility of freeze-dried nanocoposite hydrogels incorporated with biodegradable PHBV. Mater Sci Eng C 33:1616–1622CrossRefGoogle Scholar
  63. 63.
    Gao C, Ren J, Zhao C, Kong W, Dai Q, Chen Q, Liu C, Sun R (2016) Xylan-based temperature/pH sensitive hydrogels for drug controlled release. Carbohydr Polym 151:189–197CrossRefGoogle Scholar
  64. 64.
    Bluestein BM, Reed JA, Canavan HE (2017) Effect of substrate storage conditions on the stability of “smart” films for mammalian cell applications. Appl Surf Sci 392:950–959CrossRefGoogle Scholar
  65. 65.
    Hamcerencu M (2007) Contribution to the study of polymer-drug systems based on water soluble functionalized and crosslinked polysaccharides, Ph.D thesis, Haute Alsace University (Mulhouse, France)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Chemical Engineering and Environment Protection“Gheorghe Asachi” Technical UniversityIasiRomania
  2. 2.Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux (IPREM/EPCP), UMR CNRS 5254Université de Pau et des Pays de l’AdourPau Cedex 09France
  3. 3.Laboratoire de Photochimie et d’Ingénierie Macromoléculaire - Ecole Nationale de Chimie de MulhouseUniversité de Haute AlsaceMulhouse CedexFrance
  4. 4.Academy of Romanian ScientistsBucharestRomania

Personalised recommendations