Crystallization kinetics and morphology of dynamically vulcanized poly(vinylidene fluoride)/silicone rubber blends

  • Yanpeng WangEmail author
  • Tao Ding
Original Paper


Effects of silicone rubber (SR) on the isothermal crystallization kinetics, non-isothermal crystallization kinetics, crystal structure, spherulitic morphology, rheological properties and mechanical properties of dynamically vulcanized poly(vinylidene fluoride) (PVDF)/SR blends were investigated. Relative to the pure PVDF, incorporation of SR component has not only enhanced the non-isothermal crystallization rates of PVDF in the blends at the same cooling rate, but also increased the isothermal crystallization rates at the same crystallization temperature. The crystalline structure does not change for PVDF/SR blends. The poor interfacial adhesion and poor compatibility between the two phases play a critical role in the reduced Izod impact strength.


Poly(vinylidene fluoride) Silicone rubber Dynamical vulcanization Crystallization kinetics Morphology 



This work was supported by the Program of Guangzhou Science Technology and Innovation Commission [Grant Number 201607010103] and Program of Guangdong Provincial Department of Science and Technology [Grant Number 2016A010103004].


  1. 1.
    Pan PJ, Shan GR, Bao YZ (2014) Enhanced nucleation and crystallization of poly(l-lactic acid) by immiscible blending with poly(vinylidene fluoride). Ind Eng Chem Res 53:3148–3156CrossRefGoogle Scholar
  2. 2.
    Wang YP, Zhang CH, Ren YR, Ding T, Yuan DS, Chen YK (2018) Shape memory properties of dynamically vulcanized poly(lactic acid)/nitrile butadiene rubber (PLA/NBR) thermoplastic vulcanizates: the effect of ACN content in NBR. Polym Adv Technol 29:2336–2343CrossRefGoogle Scholar
  3. 3.
    Roy MA, van Duin M, Spoelstra AB, Goossens JGP (2010) The rubber particle size to control the properties-processing balance of thermoplastic/cross-linked elastomer blends. Soft Matter 6:1758–1768CrossRefGoogle Scholar
  4. 4.
    Kahar AWM, Ismail H, Abdul Hamid A (2016) The correlation between crosslink density and thermal properties of high-density polyethylene/natural rubber/thermoplastic tapioca starch blends prepared via dynamic vulcanisation approach. J Therm Anal Calorim 123:301–308CrossRefGoogle Scholar
  5. 5.
    Huang JR, Cao LM, Yuan DS, Chen YK (2018) Design of novel self-healing thermoplastic vulcanizates utilizing thermal/magnetic/light-triggered shape memory effects. ACS Appl Mater Interfaces 10:40996–41002CrossRefGoogle Scholar
  6. 6.
    Huang JR, Cao LM, Yuan DS, Chen YK (2019) Design of multi-stimuli-responsive shape memory biobased PLA/ENR/Fe3O4 TPVs with balanced stiffness-toughness based on selective distribution of Fe3O4. ACS Sustain Chem Eng 9:2304–2315CrossRefGoogle Scholar
  7. 7.
    Chen YK, Wang WT, Yuan DS, Xu CH, Cao LM, Liang XQ (2018) Bio-based PLA/NR-PMMA/NR ternary thermoplastic vulcanizates with balanced stiffness and toughness: “soft-hard” core–shell continuous rubber phase, in situ compatibilization, and properties. ACS Sustain Chem Eng 6:6488–6496CrossRefGoogle Scholar
  8. 8.
    Liu YT, Cao LM, Yuan DS, Chen YK (2018) Design of super-tough co-continuous PLA/NR/SiO2 TPVs with balanced stiffness-toughness based on reinforced rubber and interfacial compatibilization. Compos Sci Technol 165:231–239CrossRefGoogle Scholar
  9. 9.
    Liu GC, He YS, Zeng JB, Li QT, Wang YZ (2014) Fully biobased and supertough polylactide-based thermoplastic vulcanizates fabricated by peroxide-induced dynamic vulcanization and interfacial compatibilization. Biomacromolecules 15:4260–4271CrossRefGoogle Scholar
  10. 10.
    Abolhasani MM, Zarejousheghani F, Naebe M, Guo QP (2014) Does dynamic vulcanization induce phase separation? Soft Matter 10:5550–5558CrossRefGoogle Scholar
  11. 11.
    Xu CH, Zheng ZJ, Wu WC, Wang ZW, Fu LH (2019) Dynamically vulcanized PP/EPDM blends with balanced stiffness and toughness via in situ compatibilization of MAA and excess ZnO nanoparticles: preparation, structure and properties. Compos Part B Eng 160:147–157CrossRefGoogle Scholar
  12. 12.
    Xu CH, Wu WC, Zheng ZJ, Wang ZW, Nie JD (2018) Design of shape-memory materials based on sea-island structured EPDM/PP TPVs via in situ compatibilization of methacrylic acid and excess zinc oxide nanoparticles. Compos Sci Technol 167:431–439CrossRefGoogle Scholar
  13. 13.
    Salaeh S, Cassagnau P, Boiteux G, Wießner S, Nakason C (2018) Thermoplastic vulcanizates based on poly(vinylidene fluoride)/epoxidized natural rubber blends: effects of phenolic resin dosage and blend ratio. Mater Chem Phys 219:222–232CrossRefGoogle Scholar
  14. 14.
    Ismail SMRS, Chatterjee T, Naskar K (2017) Superior heat-resistant and oil-resistant blends based on dynamically vulcanized hydrogenated acrylonitrile butadiene rubber and polyamide 12. Polym Adv Technol 28:665–678CrossRefGoogle Scholar
  15. 15.
    Padmanabhan R, Naskar K, Nando GB (2015) Investigation into the structure–property relationship and technical properties of TPEs and TPVs derived from ethylene octene copolymer (EOC) and polydimethyl siloxane (PDMS) rubber blends. Mater Res Express 2:105301CrossRefGoogle Scholar
  16. 16.
    Ma PM, Xu PW, Zhai YH, Dong WF, Zhang Y, Chen MQ (2015) Biobased poly(lactide)/ethylene-co-vinyl acetate thermoplastic vulcanizates: morphology evolution, superior properties, and partial degradability. ACS Sustain Chem Eng 3:2211–2219CrossRefGoogle Scholar
  17. 17.
    Xu PW, Ma PM, Cai XX, Song SQ, Zhang Y, Dong WF, Chen MQ (2016) Selectively cross-linked poly(lactide)/ethylene-glycidyl methacrylate-vinyl acetate thermoplastic elastomers with partial dual-continuous network-like structures and shape memory performances. Eur Polym J 84:1–12CrossRefGoogle Scholar
  18. 18.
    Zhao TH, Yuan WQ, Li YD, Weng YX, Zeng JB (2018) Relating chemical structure to toughness via morphology control in fully sustainable sebacic acid cured epoxidized soybean oil toughened polylactide blends. Macromolecules 51:2027–2037CrossRefGoogle Scholar
  19. 19.
    Jian XY, An XP, Li YD, Chen JH, Wang M, Zeng JB (2017) All plant oil derived epoxy thermosets with excellent comprehensive properties. Macromolecules 50:5729–5738CrossRefGoogle Scholar
  20. 20.
    Kulshreshtha B, Ghosh AK, Misra A (2003) Crystallization kinetics and morphological behavior of reactively processed PBT/epoxy blends. Polymer 44:4723–4734CrossRefGoogle Scholar
  21. 21.
    Cao LM, Fan JF, Huang JR, Chen YK (2019) A robust and stretchable cross-linked rubber network with recyclable and self-healable capabilities based on dynamic covalent bonds. J Mater Chem A 7:4922–4933CrossRefGoogle Scholar
  22. 22.
    Cao LM, Huang JR, Chen YK (2018) Dual cross-linked epoxidized natural rubber reinforced by tunicate cellulose nanocrystals with improved strength and extensibility. ACS Sustain Chem Eng 6:14802–14811CrossRefGoogle Scholar
  23. 23.
    Wu WC, Xu CH, Zheng ZJ, Lin BF, Fu LH (2019) Strengthened, recyclable shape memory rubberfilms with a rigid filler nano-capillary network. J Mater Chem A 7:6901–6910CrossRefGoogle Scholar
  24. 24.
    Xu CH, Cao LM, Lin BF, Liang XQ, Chen YK (2016) Design of self-healing supramolecular rubbers by introducing ionic crosslinks into natural rubber via a controlled vulcanization. ACS Appl Mater Interfaces 8:17728–17737CrossRefGoogle Scholar
  25. 25.
    Fu LH, Wu FD, Xu CH, Cao TH, Wang RM, Guo SH (2018) Anisotropic shape memory behaviors of polylactic acid/citric acid-bentonite composite with a gradient filler concentration in thickness direction. Ind Eng Chem Res 57:6265–6274CrossRefGoogle Scholar
  26. 26.
    Cao XC, Ma J, Shi XH, Ren ZJ (2006) Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Appl Surf Sci 253:2003–2010CrossRefGoogle Scholar
  27. 27.
    Chen YK, Wang YH, Xu CH, Wang YP, Jiang CY (2016) New approach to fabricate novel fluorosilicone thermoplastic vulcanizate with bi-crosslinked silicone rubber-core/fluororubber-shell particles dispersed in poly(vinylidene fluoride):structure and property. Ind Eng Chem Res 55:1701–1709CrossRefGoogle Scholar
  28. 28.
    Lovinger AJ (1983) Ferroelectric polymers. Science 220:1115–1121CrossRefGoogle Scholar
  29. 29.
    Xu CH, Wang YP, Chen YK (2014) Highly toughened poly(vinylidene fluoride)/nitrile butadiene rubber blends prepared via peroxide-induced dynamic vulcanization. Polym Test 33:179–186CrossRefGoogle Scholar
  30. 30.
    Xu CH, Wang YP, Lin BF, Liang XQ, Chen YK (2015) Thermoplastic vulcanizate based on poly(vinylidene fluoride) and methyl vinyl silicone rubber by using fluorosilicone rubber as interfacial compatibilizer. Mater Des 88:170–176CrossRefGoogle Scholar
  31. 31.
    Wang YP, Fang LM, Xu CH, Chen ZH, Chen YK (2013) Preparation and properties of dynamically cured poly(vinylidene fluoride)/silicone rubber blends. Polym Test 32:1072–1078CrossRefGoogle Scholar
  32. 32.
    Wang YP, Xu CH, Chen ZH, Chen YK (2014) Improved fracture toughness of dynamically vulcanized poly(vinylidene fluoride)/silicone rubber filled zinc dimethacrylate composite. Polym Test 39:53–60CrossRefGoogle Scholar
  33. 33.
    Bai HW, Bai DY, Xiu H, Liu HL, Zhang Q, Wang K, Deng H, Chen F, Fu Q, Chiu FC (2014) Towards high-performance poly(l-lactide)/elastomer blends with tunable interfacial adhesion and matrix crystallization via constructing stereocomplex crystallites at the interface. RSC Adv 4:49374–49385CrossRefGoogle Scholar
  34. 34.
    Avrami M (1940) Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224CrossRefGoogle Scholar
  35. 35.
    Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys 9:177–184CrossRefGoogle Scholar
  36. 36.
    Liu GC, Zeng JB, Huang CL, Jiao L, Wang XL, Wang YZ (2013) Crystallization kinetics and spherulitic morphologies of biodegradable poly(butylene succinate-co-diethylene glycol succinate) copolymers. Ind Eng Chem Res 52:1591–1599CrossRefGoogle Scholar
  37. 37.
    Cebe P, Hong SD (1986) Crystallization behavior of poly(ether-ether-ketone). Polymer 27:1183–1192CrossRefGoogle Scholar
  38. 38.
    Li J, Fang ZP, Zhu Y, Tong LF, Gu AJ, Liu F (2007) Isothermal crystallization kinetics and melting behavior of multiwalled carbon nanotubes/polyamide-6 composites. J Appl Polym Sci 105:3531–3542CrossRefGoogle Scholar
  39. 39.
    Yang JJ, Pan PJ, Dong T, Inoue Y (2010) Crystallization kinetics and crystalline structure of biodegradable poly(ethylene adipate). Polymer 51:804–815Google Scholar
  40. 40.
    Hao WT, Yang W, Cai H, Huang YP (2010) Non-isothermal crystallization kinetics of polypropylene/silicon nitride nanocomposites. Polym Test 29:527–533CrossRefGoogle Scholar
  41. 41.
    Li YJ, Iwakura Y, Zhao L, Shimizu H (2008) Nanostructured poly(vinylidene fluoride) materials by melt blending with several percent of acrylic rubber. Macromolecules 41:3120–3124CrossRefGoogle Scholar
  42. 42.
    Hasegawa R, Takahashi Y, Chatani Y, Tadokoro H (1972) Crystal structures of three crystalline forms of poly(vinyldene fluoride). Polym J 3:600–610CrossRefGoogle Scholar
  43. 43.
    Naegele D, Yoon DY, Broadhurst MG (1978) Formation of a new crystal form (α) of poly(vinylidene fluoride) under electric field. Macromolecules 11:1297–1298CrossRefGoogle Scholar
  44. 44.
    Zahra M, Fereshteh B, Esmaeel D, Esmat E (2014) Preparation and characterization of CaO nanoparticles from Ca(OH)2 by direct thermal decomposition method. J Ind Eng Chem 20:113–117CrossRefGoogle Scholar
  45. 45.
    Wang YJ, Duan YF (2011) Effect of manganese ions on the structure of Ca(OH)2 and mercury adsorption performance of Mnx+/Ca(OH)2 composites. Energy Fuels 25:1553–1558CrossRefGoogle Scholar
  46. 46.
    Hoffman JD, Weeks JJ (1965) X-ray study of isothermal thickening of lamellae in bulk polyethylene at the crystallization temperature. J Chem Phys 42:4301–4302CrossRefGoogle Scholar
  47. 47.
    Ke K, Wang Y, Zhang K, Luo Y, Yang W, Xie BH, Yang MB (2012) Melt viscoelasticity, electrical conductivity, and crystallization of PVDF/MWCNT composites: effect of the dispersion of MWCNTs. J Appl Polym Sci 125:E49–E57CrossRefGoogle Scholar
  48. 48.
    Zhang QH, Fang F, Zhao X, Li YZ, Zhu MF, Chen DJ (2008) Use of dynamic rheological behavior to estimate the dispersion of carbon nanotubes in carbon nanotube/polymer composites. J Phys Chem B 112:12606–12611CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringHenan UniversityKaifengChina
  2. 2.Lab of Advanced ElastomerSouth China University of TechnologyGuangzhouChina

Personalised recommendations