Advertisement

Structural and mechanical properties of fibrous poly (caprolactone)/gelatin nanocomposite incorporated with cellulose nanofibers

  • Zahra Moazzami Goudarzi
  • Tayebeh BehzadEmail author
  • Laleh Ghasemi-Mobarakeh
  • Mahshid Kharaziha
  • Mohammad Saied Enayati
Original Paper
  • 13 Downloads

Abstract

To proceed with the electrospun poly (caprolactone) (PCL)/gelatin (Gel) combinations, the current research was aimed to explore the incorporation of cellulose nanofibers (CNF) into the PCL/Gel blends for the first time. Accordingly, various amounts of CNF were added to different ratios of PCL/Gel, and the corresponding electrospun nanocomposites were examined. Observing morphology via scanning electron microscopy proved, unexpectedly, increasing fibers diameter upon CNF addition into PCL/Gel blends. Mechanical analysis in tensile mode revealed more brittle electrospun PCL/Gel when more Gel was included into the blend due to higher Young’s modulus and lower ultimate tensile strength and strain at break. Addition of various contents of CNF led to strain reduction while displayed a summit-like curve for UTS and modulus, where registered maximum values at 2 wt% CNF for all PCL/Gel/CNF. Among the electrospun nanocomposites the highest UTS (3.24 ± 0.22 MPa) belonged to sample including 70 wt% PCL, 30 wt% Gel, and 2 wt% CNF (P70/2CNF), while P30/2CNF recorded maximum modulus (93.89 ± 10.44 MPa). The wide-angle X-ray scattering confirmed increase in PCL crystallinity upon CNF incorporation Furthermore, the presence of PCL, Gel, and CNF in electrospun composites was confirmed with Fourier transform infrared spectroscopy. Degradability of electrospun nanocomposites was carried out in PBS solution, which showed that CNF addition reduced degradation rate of PCL/Gel blends.

Keywords

Poly (caprolactone) Gelatin Cellulose nanofibers Electrospun nanocomposite 

Notes

References

  1. 1.
    Rhim J-W, Ng PK (2007) Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci Nutr 47(4):411–433CrossRefGoogle Scholar
  2. 2.
    Cha DS, Chinnan MS (2004) Biopolymer-based antimicrobial packaging: a review. Crit Rev Food Sci Nutr 44(4):223–237CrossRefGoogle Scholar
  3. 3.
    Yang L, Hsiao W, Chen P (2002) Chitosan–cellulose composite membrane for affinity purification of biopolymers and immunoadsorption. J Membr Sci 197(1–2):185–197CrossRefGoogle Scholar
  4. 4.
    Dashtimoghadam E, Hasani-Sadrabadi MM, Moaddel H (2010) Structural modification of chitosan biopolymer as a novel polyelectrolyte membrane for green power generation. Polym Adv Technol 21(10):726–734CrossRefGoogle Scholar
  5. 5.
    Ghasemi-Mobarakeh L, Prabhakaran MP, Balasubramanian P, Jin G, Valipouri A, Ramakrishna S (2013) Advances in electrospun nanofibers for bone and cartilage regeneration. J Nanosci Nanotechnol 13(7):4656–4671CrossRefGoogle Scholar
  6. 6.
    Stoppel WL, Ghezzi CE, McNamara SL, Black LD III, Kaplan DL (2015) Clinical applications of naturally derived biopolymer-based scaffolds for regenerative medicine. Ann Biomed Eng 43(3):657–680CrossRefGoogle Scholar
  7. 7.
    Huang Z-M, Zhang Y, Ramakrishna S, Lim C (2004) Electrospinning and mechanical characterization of gelatin nanofibers. Polymer 45(15):5361–5368CrossRefGoogle Scholar
  8. 8.
    Jayakumar R, Prabaharan M, Nair S, Tamura H (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28(1):142–150CrossRefGoogle Scholar
  9. 9.
    Moon S, Ryu BY, Choi J, Jo B, Farris RJ (2009) The morphology and mechanical properties of sodium alginate based electrospun poly (ethylene oxide) nanofibers. Polym Eng Sci 49(1):52–59CrossRefGoogle Scholar
  10. 10.
    Zhang Y, Venugopal J, Huang Z-M, Lim C, Ramakrishna S (2005) Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromol 6(5):2583–2589CrossRefGoogle Scholar
  11. 11.
    Li Z-F, Zhang H, Liu Q, Sun L, Stanciu L, Xie J (2013) Fabrication of high-surface-area graphene/polyaniline nanocomposites and their application in supercapacitors. ACS Appl Mater Interfaces 5(7):2685–2691CrossRefGoogle Scholar
  12. 12.
    Neisiany RE, Khorasani SN, Kong Yoong Lee J, Ramakrishna S (2016) Encapsulation of epoxy and amine curing agent in PAN nanofibers by coaxial electrospinning for self-healing purposes. RSC Adv 6(74):70056–70063.  https://doi.org/10.1039/C6RA06434E CrossRefGoogle Scholar
  13. 13.
    Arrieta MP, López J, López D, Kenny J, Peponi L (2016) Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals. Ind Crops Prod 93:290–301CrossRefGoogle Scholar
  14. 14.
    Cai N, Dai Q, Wang Z, Luo X, Xue Y, Yu F (2015) Toughening of electrospun poly (L-lactic acid) nanofiber scaffolds with unidirectionally aligned halloysite nanotubes. J Mater Sci 50(3):1435–1445CrossRefGoogle Scholar
  15. 15.
    Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci 35(10):1217–1256CrossRefGoogle Scholar
  16. 16.
    Fang R, Zhang E, Xu L, Wei S (2010) Electrospun PCL/PLA/HA based nanofibers as scaffold for osteoblast-like cells. J Nanosci Nanotechnol 10(11):7747–7751CrossRefGoogle Scholar
  17. 17.
    Nitya G, Nair GT, Mony U, Chennazhi KP, Nair SV (2012) In vitro evaluation of electrospun PCL/nanoclay composite scaffold for bone tissue engineering. J Mater Sci Mater Med 23(7):1749–1761CrossRefGoogle Scholar
  18. 18.
    Augustine R, Malik HN, Singhal DK, Mukherjee A, Malakar D, Kalarikkal N, Thomas S (2014) Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. J Polym Res 21(3):347CrossRefGoogle Scholar
  19. 19.
    Gaharwar AK, Mukundan S, Karaca E, Dolatshahi-Pirouz A, Patel A, Rangarajan K, Mihaila SM, Iviglia G, Zhang H, Khademhosseini A (2014) Nanoclay-enriched poly (ɛ-caprolactone) electrospun scaffolds for osteogenic differentiation of human mesenchymal stem cells. Tissue Eng Part A 20(15–16):2088–2101CrossRefGoogle Scholar
  20. 20.
    Scaffaro R, Lopresti F, Maio A, Botta L, Rigogliuso S, Ghersi G (2017) Electrospun PCL/GO-g-PEG structures: processing-morphology-properties relationships. Compos A Appl Sci Manuf 92:97–107CrossRefGoogle Scholar
  21. 21.
    Espadín A, De Dios LT, Ruvalcaba E, Valadez-García J, Velasquillo C, Bustos-Jaimes I, Vázquez-Torres H, Gimeno M, Shirai K (2018) Production and characterization of a nanocomposite of highly crystalline nanowhiskers from biologically extracted chitin in enzymatic poly (ε-caprolactone). Carbohyd Polym 181:684–692CrossRefGoogle Scholar
  22. 22.
    Naghieh S, Foroozmehr E, Badrossamay M, Kharaziha M (2017) Combinational processing of 3D printing and electrospinning of hierarchical poly (lactic acid)/gelatin-forsterite scaffolds as a biocomposite: mechanical and biological assessment. Mater Des 133:128–135CrossRefGoogle Scholar
  23. 23.
    Kharaziha M, Fathi M, Edris H (2013) Tunable cellular interactions and physical properties of nanofibrous PCL-forsterite: gelatin scaffold through sequential electrospinning. Compos Sci Technol 87:182–188CrossRefGoogle Scholar
  24. 24.
    Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng B: Rev 19(6):485–502CrossRefGoogle Scholar
  25. 25.
    Dórame-Miranda RF, Rodríguez-Félix DE, López-Ahumada GA, Castro-Enriquez DD, Quiroz-Castillo JM, Márquez-Ríos E, Rodríguez-Félix F (2018) Effect of pH and temperature on the release kinetics of urea from wheat-gluten membranes obtained by electrospinning. Polym Bull 75(11):5305–5319.  https://doi.org/10.1007/s00289-018-2327-9 CrossRefGoogle Scholar
  26. 26.
    Sangeetha K, Alsharani FA, Angelin Vinodhini P, Sudha PN, Jayachandran V, Sukumaran A (2018) Antimicrobial efficacy of novel nanochitosan-based mat via electrospinning technique. Polym Bull 75(12):5599–5618.  https://doi.org/10.1007/s00289-018-2324-z CrossRefGoogle Scholar
  27. 27.
    Neisiany RE, Khorasani SN, Naeimirad M, Lee JKY, Ramakrishna S (2017) Improving mechanical properties of carbon/epoxy composite by incorporating functionalized electrospun polyacrylonitrile nanofibers. Macromol Mater Eng 302(5):1600551.  https://doi.org/10.1002/mame.201600551 CrossRefGoogle Scholar
  28. 28.
    Liu X, Ma PX (2009) Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials 30(25):4094–4103CrossRefGoogle Scholar
  29. 29.
    Akbarzadeh R, Yousefi AM (2014) Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 102(6):1304–1315CrossRefGoogle Scholar
  30. 30.
    Hou Q, Grijpma DW, Feijen J (2003) Preparation of interconnected highly porous polymeric structures by a replication and freeze-drying process. J Biomed Mater Res B Appl Biomater 67(2):732–740CrossRefGoogle Scholar
  31. 31.
    Baker SC, Rohman G, Southgate J, Cameron NR (2009) The relationship between the mechanical properties and cell behaviour on PLGA and PCL scaffolds for bladder tissue engineering. Biomaterials 30(7):1321–1328CrossRefGoogle Scholar
  32. 32.
    Famili M, Janani H, Enayati M (2011) Foaming of a polymer–nanoparticle system: effect of the particle properties. J Appl Polym Sci 119(5):2847–2856CrossRefGoogle Scholar
  33. 33.
    Enayati M, Famili MHN, Janani H (2013) Open-celled microcellular foaming and the formation of cellular structure by a theoretical pattern in polystyrene. Iran Polym J 22(6):417–428CrossRefGoogle Scholar
  34. 34.
    Enayati M, Famili M, Janani H (2010) Production of polystyrene open-celled microcellular foam in batch process by super critical CO2. Iran J Polym Sci Technol 23:223–234 (In Persian) Google Scholar
  35. 35.
    Neisiany RE, Khorasani SN, Lee JKY, Naeimirad M, Ramakrishna S (2018) Interfacial toughening of carbon/epoxy composite by incorporating styrene acrylonitrile nanofibers. Theor Appl Fract Mech 95:242–247CrossRefGoogle Scholar
  36. 36.
    Razavi S, Neisiany RE, Ayatollahi M, Ramakrishna S, Khorasani SN, Berto F (2018) Fracture assessment of polyacrylonitrile nanofiber-reinforced epoxy adhesive. Theor Appl Fract Mech 97:448–453CrossRefGoogle Scholar
  37. 37.
    Razavi SMJ, Neisiany RE, Khorasani SN, Ramakrishna S, Berto F (2018) Effect of neat and reinforced polyacrylonitrile nanofibers incorporation on interlaminar fracture toughness of carbon/epoxy composite. Theor Appl Mech Lett 8(2):126–131CrossRefGoogle Scholar
  38. 38.
    Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani M-H, Ramakrishna S (2008) Electrospun poly (ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29(34):4532–4539CrossRefGoogle Scholar
  39. 39.
    Ji W, Yang F, Ma J, Bouma MJ, Boerman OC, Chen Z, van den Beucken JJ, Jansen JA (2013) Incorporation of stromal cell-derived factor-1α in PCL/gelatin electrospun membranes for guided bone regeneration. Biomaterials 34(3):735–745CrossRefGoogle Scholar
  40. 40.
    Chen Z, Cao L, Wang L, Zhu H, Jiang H (2013) Effect of fiber structure on the properties of the electrospun hybrid membranes composed of poly (ε-caprolactone) and gelatin. J Appl Polym Sci 127(6):4225–4232CrossRefGoogle Scholar
  41. 41.
    Xue J, He M, Liang Y, Crawford A, Coates P, Chen D, Shi R, Zhang L (2014) Fabrication and evaluation of electrospun PCL–gelatin micro-/nanofiber membranes for anti-infective GTR implants. J Mater Chem B 2(39):6867–6877CrossRefGoogle Scholar
  42. 42.
    Ren K, Wang Y, Sun T, Yue W, Zhang H (2017) Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes. Mater Sci Eng C 78:324–332CrossRefGoogle Scholar
  43. 43.
    Saadatkish N, Nouri Khorasani S, Morshed M, Allafchian A-R, Beigi M-H, Masoudi Rad M, Esmaeely Neisiany R, Nasr-Esfahani M-H (2018) A ternary nanofibrous scaffold potential for central nerve system tissue engineering. J Biomed Mater Res, Part A 106(9):2394–2401.  https://doi.org/10.1002/jbm.a.36431 CrossRefGoogle Scholar
  44. 44.
    Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang ZM (2005) Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater 72(1):156–165CrossRefGoogle Scholar
  45. 45.
    Denis P, Dulnik J, Sajkiewicz P (2015) Electrospinning and structure of bicomponent polycaprolactone/gelatin nanofibers obtained using alternative solvent system. Int J Polym Mater Polym Biomater 64(7):354–364CrossRefGoogle Scholar
  46. 46.
    Gautam S, Dinda AK, Mishra NC (2013) Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Mater Sci Eng C 33(3):1228–1235CrossRefGoogle Scholar
  47. 47.
    Rajzer I, Menaszek E, Kwiatkowski R, Planell JA, Castano O (2014) Electrospun gelatin/poly (ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering. Mater Sci Eng C 44:183–190CrossRefGoogle Scholar
  48. 48.
    Lee J, Deng Y (2013) Nanoindentation study of individual cellulose nanowhisker-reinforced PVA electrospun fiber. Polym Bull 70(4):1205–1219CrossRefGoogle Scholar
  49. 49.
    Enayati MS, Behzad T, Sajkiewicz P, Bagheri R, Ghasemi-Mobarakeh L, Kuśnieruk S, Rogowska-Tylman J, Pahlevanneshan Z, Choińska E, Święszkowski W (2016) Fabrication and characterization of electrospun bionanocomposites of poly (vinyl alcohol)/nanohydroxyapatite/cellulose nanofibers. Int J Polym Mater Polym Biomater 65(13):660–674CrossRefGoogle Scholar
  50. 50.
    Enayati MS, Neisiany RE, Sajkiewicz P, Behzad T, Denis P, Pierini F (2019) Effect of nanofiller incorporation on thermomechanical and toughness of poly (vinyl alcohol)-based electrospun nanofibrous bionanocomposites. Theor Appl Fract Mech 99:44–50.  https://doi.org/10.1016/j.tafmec.2018.11.006 CrossRefGoogle Scholar
  51. 51.
    Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromol 11(3):674–681CrossRefGoogle Scholar
  52. 52.
    Bellani CF, Pollet E, Hebraud A, Pereira FV, Schlatter G, Avérous L, Bretas RE, Branciforti MC (2016) Morphological, thermal, and mechanical properties of poly (ε‐caprolactone)/poly (ε‐caprolactone)‐grafted‐cellulose nanocrystals mats produced by electrospinning. J Appl Polym Sci 133 (21):43445.  https://doi.org/10.1002/app.43445
  53. 53.
    Rezvani Ghomi E, Khalili S, Nouri Khorasani S, Esmaeely Neisiany R, Ramakrishna S (2019) Wound dressings: Current advances and future directions. J Appl Polym Sci 136 (27):47738. doi:10.1002/app.47738Google Scholar
  54. 54.
    Enayati MS, Behzad T, Sajkiewicz P, Rafienia M, Bagheri R, Ghasemi-Mobarakeh L, Kolbuk D, Pahlevanneshan Z, Bonakdar SH (2018) Development of electrospun poly (vinyl alcohol)-based bionanocomposite scaffolds for bone tissue engineering. J Biomed Mater Res Part A 106(4):1111–1120CrossRefGoogle Scholar
  55. 55.
    Zoppe JO, Peresin MS, Habibi Y, Venditti RA, Rojas OJ (2009) Reinforcing poly(ε-caprolactone) nanofibers with cellulose nanocrystals. Appl Mater Interf 1:1996–2004CrossRefGoogle Scholar
  56. 56.
    Vatankhah E, Prabhakaran MP, Jin G, Mobarakeh LG, Ramakrishna S (2014) Development of nanofibrous cellulose acetate/gelatin skin substitutes for variety wound treatment applications. J Biomater Appl 28(6):909–921CrossRefGoogle Scholar
  57. 57.
    Khalili S, Khorasani SN, Neisiany RE, Ramakrishna S (2019) Theoretical cross-link density of the nanofibrous scaffolds. Mat Design Process Comm 1(1):e22.  https://doi.org/10.1002/mdp2.22 CrossRefGoogle Scholar
  58. 58.
    Mark JE (2007) Physical properties of polymers handbook, vol 1076. Springer, BerlinCrossRefGoogle Scholar
  59. 59.
    Enayati MS, Behzad T, Sajkiewicz P, Bagheri R, Ghasemi-Mobarakeh L, Pierini F (2018) Theoretical and experimental study of the stiffness of electrospun composites of poly (vinyl alcohol), cellulose nanofibers, and nanohydroxy apatite. Cellulose 25(1):65–75CrossRefGoogle Scholar
  60. 60.
    Vatankhah E, Semnani D, Prabhakaran MP, Tadayon M, Razavi S, Ramakrishna S (2014) Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds. Acta Biomater 10(2):709–721CrossRefGoogle Scholar
  61. 61.
    Rajzer I, Menaszek E, Kwiatkowski R, Chrzanowski W (2014) Bioactive nanocomposite PLDL/nano-hydroxyapatite electrospun membranes for bone tissue engineering. J Mater Sci Mater Med 25(5):1239–1247.  https://doi.org/10.1007/s10856-014-5149-9 CrossRefGoogle Scholar
  62. 62.
    Koosha M, Mirzadeh H, Shokrgozar MA, Farokhi M (2015) Nanoclay-reinforced electrospun chitosan/PVA nanocomposite nanofibers for biomedical applications. RSC Adv 5(14):10479–10487CrossRefGoogle Scholar
  63. 63.
    Enayati MS, Behzad T, Sajkiewicz P, Bagheri R, Ghasemi-Mobarakeh L, Łojkowski W, Pahlevanneshan Z, Ahmadi M (2016) Crystallinity study of electrospun poly (vinyl alcohol) nanofibers: effect of electrospinning, filler incorporation, and heat treatment. Iran Polym J 25(7):647–659CrossRefGoogle Scholar
  64. 64.
    Cohn D, Salomon AH (2005) Designing biodegradable multiblock PCL/PLA thermoplastic elastomers. Biomaterials 26(15):2297–2305CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zahra Moazzami Goudarzi
    • 1
  • Tayebeh Behzad
    • 1
    Email author
  • Laleh Ghasemi-Mobarakeh
    • 2
  • Mahshid Kharaziha
    • 3
  • Mohammad Saied Enayati
    • 1
    • 4
  1. 1.Department of Chemical EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Department of Textile EngineeringIsfahan University of TechnologyIsfahanIran
  3. 3.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
  4. 4.Institute of Fundamental Technological ResearchPolish Academy of SciencesWarsawPoland

Personalised recommendations