Antibacterial effect of novel grafted gelatin on gram-negative bacteria

  • Magdy W. Sabaa
  • Mohsen E. Mohamed
  • Mohamed M. Abdellatif
  • Soliman M. A. SolimanEmail author
Original Paper


N-vinyl imidazole (NVI) was grafted onto gelatin using potassium persulphate (KPS) as thermal initiator in aqueous medium. The effects of various parameters such as different KPS and NVI concentrations, the time and reaction temperature on the grafting process have been investigated. The optimum conditions were found to get the highest grafting efficiency as follow [KPS] = 6 × 10−3 mol L−1, [NVI] = 1.5 mol L−1 at reaction temperature 60 °C for 90 min. The grafted gelatin copolymers were characterized using different techniques namely Fourier transform infrared (FTIR) and 1H NMR spectroscopy, scanning electron microscope, X-ray diffraction (XRD) and thermal analysis. The antibacterial activity of gelatin and its grafted copolymers was evaluated. The highest percent of grafting (G% = 215%) showed strong improvement in activity of gelatin against gram-negative bacteria used Escherichia coli and Klebsiella pneumonia. In case of Klebsiella pneumonia, grafted gelatin copolymer showed the same inhibition zone of gentamicin (standard antibiotic).


Gelatin Graft Poly(N-vinyl imidazole) Characterization Antibacterial 



  1. 1.
    Soleimani F, Sadeghi M, Shahsavari H (2012) Graft copolymerization of Gelatin-g-poly (Acrylic acid-co-Acrylamide) and calculation of grafting parameters. Ind J Sci Tech 5(2):2041–2046Google Scholar
  2. 2.
    Ninan G, Zynudheen AA, Joshy CG, Yousuf KS (2013) Physical, chemical and functional properties of gelatin extracted from the skin of rohu, Labeorohita and yellow fin tuna, Thunnus albacores. Indian J Fish 60(2):123–128Google Scholar
  3. 3.
    Araghi M, Moslehi Z, Nafchi AM, Mostahsan A, Salamat N, Garmakhany AD (2015) Cold water fish gelatin modification by a natural phenolic cross-linker (ferulic acid and caffeic acid). J Wiley Periodicals Inc 3(5):370–375Google Scholar
  4. 4.
    Nursel P, Olgum G (2002) Synthesis and characterization of poly(N- vinylimidazole) hydrogels crosslinked by gamma irradiation. Polym Int 51:1404–1410CrossRefGoogle Scholar
  5. 5.
    Ren Y, Zhao X, Liang X, Ma PX, Guo B (2017) Injectable hydrogel based on quaternized chitosan, gelatin and dopamine as localized drug delivery system to treat Parkinson’s disease. Int J Biol Macromol 105(1):1079–1087CrossRefGoogle Scholar
  6. 6.
    Wu Y, Wang L, Guo B, Ma PX (2017) Interwoven aligned conductive nanofiber yarn/hydrogel composite scaffolds for engineered 3D cardiac anisotropy. ACS Nano 11(6):5646–5659CrossRefGoogle Scholar
  7. 7.
    Zhao X, Guo B, Wu H, Liang Y, Ma PX (2018) Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat Commun 9:2784–2797CrossRefGoogle Scholar
  8. 8.
    Zhao X, Wu H, Guo B, Dong R, Qiu Y, Ma PX (2017) Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 122:34–47CrossRefGoogle Scholar
  9. 9.
    Zhao X, Li P, Guo B, Ma PX (2015) Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering. Acta Biomater 26:236–248CrossRefGoogle Scholar
  10. 10.
    Qu J, Zhao X, Liang Y, Zhang T, Ma PX, Guo B (2018) Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials 183:185–199CrossRefGoogle Scholar
  11. 11.
    Halil U, Can I, Oya SA (2003) Graft copolymerization of N-vinylimidazole on poly(ethyleneterephthalate) fibers in a swelling solvent using Azobisisobutyronitrile as initiator. Turk J Chem 27:4003–4015Google Scholar
  12. 12.
    Shirzadeh Z, Foladi S, Didehban Kh (2015) Swelling characterization of nanocomposite hydrogels of poly(acrylamide-N-vinylimidazole). JACR 9(2):33–36Google Scholar
  13. 13.
    Strat M, Vasiliu S, Strat G, Luca C, Grecu I, Gurlui S, Stratulat SI (2006) Spectral and thermogravimetric analysis of some poly(carboxybetaine)s polymers. J Optoelectron Adv M 8(1):181–184Google Scholar
  14. 14.
    Kim JY, Ha CS, Jo NJ (2002) Synthesis and Properties of biodegradable chitin-graftpoly(l-lactide) copolymers. Polym Int 51:1123–1128CrossRefGoogle Scholar
  15. 15.
    Sabaa MW, Mohamed NA, Mohamed RR, Khalil NM, Abd El Latif SM (2010) Synthesis, characterization and antimicrobial activity of poly (N-vinyl imidazole) grafted carboxymethyl chitosan. Carbohydr Polym 79(4):998–1005CrossRefGoogle Scholar
  16. 16.
    Young S, Wong M, Tabata Y, Mikos AG (2005) Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release 109:256–274CrossRefGoogle Scholar
  17. 17.
    Jongjareonrak A, Benjakul S, Visessanguan W, Prodpran T, Tanaka M (2006) Characterization of edible films from skin gelatin of brown stripe red snapper and big eye snapper. Food Hydrocolloids 20:492–501CrossRefGoogle Scholar
  18. 18.
    Huss FRM, Junker JPE, Johnson H, Kratz G (2007) Macroporous gelatine spheres as culture substrate, transplantation vehicle, and biodegradable scaffold for guided regeneration of soft tissues. In vivo study in nude mice. J Plast Reconstr Aesthet Surg 60:543–555CrossRefGoogle Scholar
  19. 19.
    Vandervoort J, Ludwig A (2004) Preparation and evaluation of drug-loaded gelatin nanoparticles for topical ophthalmic use. Eur J Pharm Biopharm 57:251–261CrossRefGoogle Scholar
  20. 20.
    Tabata Y, Hijikata S, Ikada Y (1994) Enhanced vascularization and tissue granulation by basic fibroblast growth factor impregnated in gelatin hydrogels. J Control Release 31:189–199CrossRefGoogle Scholar
  21. 21.
    Liu TY, Hu SH, Liu KH, Liu DM, Chen SY (2006) Preparation and characterization of smart magnetic hydrogels and its use for drug release. J Magn Magn Mater 304:397–399CrossRefGoogle Scholar
  22. 22.
    Liu J, Meisner D, Kwong E, Wu XY, Johnston MR (2007) A novel trans-lymphatic drug delivery system: implantable gelatin sponge impregnated with PLGA–paclitaxel microspheres. Biomaterials 28:3236–3244CrossRefGoogle Scholar
  23. 23.
    Fukae R, Maekawa A, Sangen O (2005) Gel-spinning and drawing of gelatin. Polymer 46:11193–11204CrossRefGoogle Scholar
  24. 24.
    Huang ZM, Zhang YZ, Ramakrishna S, Lim CT (2004) Electrospinning and mechanical characterization of gelatin nanofibers. Polymer 45:5361–5368CrossRefGoogle Scholar
  25. 25.
    Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang ZM (2005) Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res Appl Biomater 72B:156–165CrossRefGoogle Scholar
  26. 26.
    Ki CS, Baek DH, Gang KD, Lee KH, Um IC, Park YH (2005) Characterization of gelatin nanofiber prepared from gelatin–formic acid solution. Polymer 46:5094–5102CrossRefGoogle Scholar
  27. 27.
    Li M, Mondrinos MJ, Gandhi MR, Ko FK, Weiss AS, Lelkes PI (2005) Electrospun protein fibers as matrices for tissue engineering. Biomaterials 26:5999–6008CrossRefGoogle Scholar
  28. 28.
    Nurse P, Zakir M, Olgun G (2004) Synthesis and characterization of poly(N-vinyl imidazole-co-acrylonitrile) and determination of monomer reactivity ratios. Macromol Chem Phys 205:1088–1095CrossRefGoogle Scholar
  29. 29.
    Kizhnyaev VN, Petrova TL, Pokatilov FA, Zhitov RG, Edel’shtein OA (2014) Synthesis of network poly(N-vinyl imidazole) and properties of the related hydrogels. Polym Sci Ser B 56(2):645–649CrossRefGoogle Scholar
  30. 30.
    Shiner N, Butun S, Ozay O, Dibek B (2012) Utilization of smart hydrogel-metal composites as catalysis media. J Colloid Interface Sci 373(1):122–128CrossRefGoogle Scholar
  31. 31.
    Li M, Guo Y, Wei Y, MacDiarmid AG, Lelkes PI (2006) Electrospinning polyaniline contained gelatin nanofibers for tissue engineering applications. Biomaterials 27:2705–2715CrossRefGoogle Scholar
  32. 32.
    Choktaweesap N, Arayanarakul K, Aht-ong D, Meechaisue C, Supaphol P (2007) Electrospun gelatin fibers: effect of solvent system on morphology and fiber diameters. Polym J 39:622–631CrossRefGoogle Scholar
  33. 33.
    Songchotikunpan P, Tattiyakul J, Supaphol P (2008) Extraction and electrospinning of gelatin from fish skin. Int J Biol Macromol 42:247–255CrossRefGoogle Scholar
  34. 34.
    Soliman SMA, Mohamed ME, Sabaa MW (2018) Synthesis, characterization and application of gelatin-g-polyacrylonitrile and its nanoparticles. Polym Bull 75:1403–1416CrossRefGoogle Scholar
  35. 35.
    Guo D, Zhuo YZ, Lai AN, Zhang QG, Zhu AM, Liu QL (2016) Interpenetrating anion exchange membranes using poly(1-vinylimidazole) as bifunctional crosslinker for fuel cells. J Membr Sci 518:295–304CrossRefGoogle Scholar
  36. 36.
    Mohsen SMY, Hamzah HA, Imad Al-Deen MM, Baharudin R (2016) Antimicrobial Susceptibility of Klebsiella pneumoniae and Escherichia coli with Extended-Spectrum β-lactamase associated Genes in Hospital Tengku Ampuan Afzan, Kuantan. Pahang. Malays. J Med Sci 23(2):14–20Google Scholar
  37. 37.
    Carlet J, Jarlier V, Harbarth S, Voss A, Goossens H, Pittet D (2012) Ready for a world without antibiotics? The pensières antibiotic resistance call to action. Antimicrob Resist Infect Control 1(11):1–13Google Scholar
  38. 38.
    Kang C, Song J (2013) Antimicrobial resistance in Asia: current epidemiology and clinical implications. Infect Chemother 45(1):22–31CrossRefGoogle Scholar
  39. 39.
    Rani N, Sharma A, Singh R (2013) Imidazoles as promising scaffolds for antibacterial activity: a review. Mini Rev Med Chem 13(12):1812–1835CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of ScienceCairo UniversityGizaEgypt
  2. 2.Chemical Industries Division, Chemistry of Tanning Materials and Leather TechnologyNational Research CentreDokki-GizaEgypt

Personalised recommendations