Novel immobilized Cu2+-aminated poly (methyl methacrylate) grafted cellophane membranes for affinity separation of His-Tag chitinase

  • M. S. Mohy EldinEmail author
  • S. Abdel Rahman
  • G. F. El Fawal
Original Paper


In this article, we developed novel immobilized Cu2+-hydroxamic acid functionalized poly (methyl methacrylate) grafted cellophane membranes for affinity separation of His-Tag chitinase. First, we grafted the cellophane membranes with poly (methyl methacrylate) (PMMA) and then treated with hydroxylamine hydrochloride to induce hydroxamic acid ions exchange groups, and so we immobilized the copper ions on the hydroxamic acid functionalized PMMA grafted membranes. Fourier transforms infrared analysis and thermal gravimetric analysis provided pieces of evidence of the grafting and the functionalization processes. The membranes show a high affinity toward separating the chitinase enzyme from BSA mixtures. The Cu2+-hydroxamic acid functionalized poly (methyl methacrylate) grafted cellophane membranes show no leakage of Cu2+ ions in the eluting solution during the protein elution process while eluted 88% of the adsorbed chitinase and 80% of the adsorbed BSA.


Proteins Enzymes Separation techniques Chromatography Affinity membranes Cellulose Graft copolymers 



  1. 1.
    Proath J, Carlsson J, Olsson I, Belfrage G (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258:598–599CrossRefGoogle Scholar
  2. 2.
    Hemdan ES, Zhao Y, Sulkowski E, Porath J (1989) Surface topography of histidine residues: a facile probe by immobilized metal ion affinity chromatography. Proc Natl Acad Sci USA 86:1811–1815CrossRefGoogle Scholar
  3. 3.
    Arnold FH (1991) Metal affinity separation: a new dimension in protein processing. Biotechnology 9:151–156Google Scholar
  4. 4.
    Brandt S, Goffe RA, Kessler SB, O’Connor JL, Zale SE (1988) Membrane-based affinity technology for commercial scale purification. Biotechnology 6:779–782Google Scholar
  5. 5.
    Roper DK, Lightfoot EN (1995) Separation of biomolecules using adsorptive membranes. Chromatogr A 702:3–26CrossRefGoogle Scholar
  6. 6.
    Charcosset C (1998) Purification of proteins by membrane chromatography. J Chem Technol Biotechnol 71:95–110CrossRefGoogle Scholar
  7. 7.
    Zou H, Luo Q, Zhou D (2001) Affinity membrane chromatography for the analysis and purification of proteins. J Biochem Biophys Methods 49:199–240CrossRefGoogle Scholar
  8. 8.
    Rodemann K, Staude E (1994) Synthesis and characterization of affinity membranes made from polysulfone. J Membr Sci 88:271–278CrossRefGoogle Scholar
  9. 9.
    Reif OW, Nier V, Bahr U, Freitag R (1994) Immobilized metal affinity membrane adsorbers as stationary phases for metal interaction protein separation. J Chromatogr A 664:13–25CrossRefGoogle Scholar
  10. 10.
    Beeskow TC, Kusharyoto W, Anspach FB, Kroner KH, Deckwer WD (1995) Surface modification of microporous polyamide membranes with hydroxyethyl cellulose and their application as affinity membranes. J Chromatogr A 715:49–65CrossRefGoogle Scholar
  11. 11.
    Kubota N, Nakagawa Y, Eguchi Y (1996) Recovery of serum proteins using cellulosic affinity membrane modified by immobilization of CU2+ ion. J Appl Poly Sci 62:1153–1160CrossRefGoogle Scholar
  12. 12.
    Arica MY, Testereci HN, Denizli A (1998) Dye–ligand and metal chelate poly(2-hydroxyethylmethacrylate) membranes for affinity separation of proteins. J Chromatogr A 799:83–91CrossRefGoogle Scholar
  13. 13.
    Denizli A, Senel S, Arica MY (1998) Cibacron Blue F3GA and Cu(II) derived poly(2-hydroxyethylmethacrylate) membranes for lysozyme adsorption. Coll Surf B 11:113–122CrossRefGoogle Scholar
  14. 14.
    Camperi SA, Grasselli M, Navarro del Cañizo AA, Smolko EE, Cascone O (1998) Chromatographic characterization of immobilized metal ion hollow-fiber affinity membranes obtained by direct grafting. J Liq Chromatogr Relat Technol 21:1283–1294CrossRefGoogle Scholar
  15. 15.
    Crawford J, Ramakrishnan S, Periera P, Gardner S, Coleman M, Beitle R (1999) Immobilized metal affinity membrane separation: characteristics of two materials of differing preparation chemistries. Sep Sci Technol 34:2793–2802CrossRefGoogle Scholar
  16. 16.
    Yang L, Jia L, Zou H, Zhang Y (1999) Immobilized iminodiacetic acid (IDA)-type Cu2+-chelating membrane affinity chromatography for purification of bovine liver catalase. Biomed Chromatogr 13:229–234CrossRefGoogle Scholar
  17. 17.
    Hari PR, Paul W, Sharma CP (2000) Adsorption of human IgG on Cu2+-immobilized cellulose affinity membrane: preliminary study. J Biomed Mater Res 50:110–113CrossRefGoogle Scholar
  18. 18.
    Senel S, Arica MY, Denizli A (2001) Zinc ion-promoted adsorption of lysozyme to Cibacron Blue F3GA-attached microporous polyamide hollow-fiber membranes. Coll Surf A 182:161–173CrossRefGoogle Scholar
  19. 19.
    Tsai Y, Wang H, Suen S-Y (2002) Purification of hepatocyte growth factor using polyvinyldiene fluoride-based immobilized metal affinity membranes: equilibrium adsorption study. J Chromatogr B 766:133–143CrossRefGoogle Scholar
  20. 20.
    Wu C, Suen S, Chen S, Tzeng J (2003) Analysis of protein adsorption on regenerated cellulose-based immobilized copper ion affinity membranes. J Chromatogr A 996:53–70CrossRefGoogle Scholar
  21. 21.
    Mohy Eldin MS, Soliman EA, Hassan EA, Abu-Saied MA (2009) Immobilized metal ions cellophane—PGMA grafted membranes for affinity separation of β-galactosidase enzyme: preparation and characterization. J Appl Poly Sci 111:2647–2656CrossRefGoogle Scholar
  22. 22.
    Mohy Eldin MS, Abdel rahman S, El-Fawal GF (2011) Preparation and characterization of grafted cellophane membranes for affinity separation of His-Tag Chitinase. Adv Poly Technol 30:191–202CrossRefGoogle Scholar
  23. 23.
    El-Awady NI, El-Awady MM, Mohy Eldin MS (1999) Cerric ion-initiated grafting of acrylonitrile onto cellophane films. Egypt J Text Polym Sci Technol 3:25–41Google Scholar
  24. 24.
    Lepoutre P, Hui SH (1973) Grafting acrylonitrile onto wood pulp: influence of process variables. J Appl Poly Sci 19:1257–1268CrossRefGoogle Scholar
  25. 25.
    Kulkarni AY, Mehta PC (1968) Ceric ion induced redox polymerization of acrylonitrile grafted cellulose fibers. J Appl Poly Sci 12:1321–1342CrossRefGoogle Scholar
  26. 26.
    El-Awady MM, El-Awady NI, Mohy Eldin MS (2002) Chemical induced graft copolymerization of acrylic acid onto cellophane films. Int J Polym Mat 51:209–223CrossRefGoogle Scholar
  27. 27.
    Hill JO (1991) For Better Thermal Analysis and calorimetry. III. In: ICTACGoogle Scholar
  28. 28.
    Vita SB (1984) Ion-exchange and water sorbent materials produced by graft copolymerization to cellulose. Ph.D. thesis, North Caroline State University, USAGoogle Scholar
  29. 29.
    Perry BW, Doumas BT (1979) Effect of heparin on albumin determination by use of bromcresol green and bromcresol purple. Clin Chem 25:1520–1522Google Scholar
  30. 30.
    Sun T, Xu P, Liu Q, Xue J, Xie W (2003) Graft copolymerization of methacrylic acid onto carboxymethyl chitosan. Eur Polym J 39:189–192CrossRefGoogle Scholar
  31. 31.
    Anbarason R, Jayasehara J, Sudha H, Nirmala PV, Gopalon A (2001) Peroxosalts Initiated Graft Copolymerization of o-toluidine onto rayon fibre—a kinetic approach. Int J Polym Mater 48:199–223CrossRefGoogle Scholar
  32. 32.
    Celik M, Sacak M (2000) The rate of grafting and some kinetic parameters of the graft copolymerization of methacrylic acid on poly (ethylene terephthalate) fibers with azobisisobutyronitrile. Turkey J Chem 24:269–274Google Scholar
  33. 33.
    Garnett JL (1979) Grafting. Rad Phys Chem 14:79–99Google Scholar
  34. 34.
    Sood DS, Kishore J, Misra BN (1985) Grafting onto wool. XXVII. Graft copolymerization of MixeD vinyl monomers by use of ceric ammonium nitrate as redox initiator. J Macromol Sci Chem A 22:263–268CrossRefGoogle Scholar
  35. 35.
    Dilli S, Garnett JL (1967) Radiation-induced reactions with cellulose. III. Kinetics of styrene copolymerization in methanol. J Polym Sci 11:859–870Google Scholar
  36. 36.
    Dowall MC, Gupta DJ, Stanett V (1982) ACS symposium series, p 187Google Scholar
  37. 37.
    Roman-Auguirre M, Marquez-Lucero A, Zaragoza-contreras E (2004) Elucidating the graft copolymerization of methyl methacrylate onto wood-fiber. Carbohydr Polym 55:201–210CrossRefGoogle Scholar
  38. 38.
    Saikia CN, Ali F (1999) Graft copolymerization of methyl methacrylate onto high α-cellulose pulp extracted from Hibiscus sabdariffa and Gmelina arborea. Biores Technol 68:165–171CrossRefGoogle Scholar
  39. 39.
    Lutfor Rahman Md, Mandal BH, Sarkar SM, Yusoff MM, Arshad S, Musta B (2016) Synthesis of poly(hydroxamic acid) ligand from polymer grafted corn-cob cellulose for transition metals extraction. Polym Adv Technol 27:1625–1636CrossRefGoogle Scholar
  40. 40.
    Lutfor Rahman Md, Mandal HB, Sarkar SM, Kabir MN, Farid EM, Arshad SE, Musta B (2016) Synthesis of tapioca cellulose based poly(hydroxamic acid) ligand for heavy metals removal from water. J Macromol Sci A 53:515–522CrossRefGoogle Scholar
  41. 41.
    Raghu AV, Gadaginamath GS, Mathew N, Halligudi SB, Aminabhavi TM (2007) Synthesis, characterization, and acoustic properties of new soluble polyurethanes based on 2,20-[1,4-phenylenebis (nitrilomethylylidene) diphenol and2,20-[4,40-methylene-di-2-methylphenylene-1,10-bis(nitrilomethylylidene)] diphenol. J Appl Polym Sci 106:299–308CrossRefGoogle Scholar
  42. 42.
    Raghu AV, Anita G, Barigaddi YM, Gadaginamath GS, Aminabhavi TM (2007) Synthesis and characterization of novel polyurethanes based on 2,6-Bis(4-hydroxybenzylidene) cyclohexanone hard segments. J Appl Polym Sci 104:81–88CrossRefGoogle Scholar
  43. 43.
    Reddy KR, Raghu AV, Jeong HM (2008) Synthesis and characterization of novel polyurethanes based on 4,4′-{1,4-phenylene bis [methylylidenenitrilo]}diphenol. Polym Bull 60:609–616CrossRefGoogle Scholar
  44. 44.
    Suhas DP, Jeong HM, Aminabhavi TM, Raghu AV (2014) Preparation and characterization of novel polyurethanes containing 4,40-{oxy-1,4-diphenyl Bis (nitromethylidine)}diphenol Schiff base diol. Polym Eng Sci 54:24–32CrossRefGoogle Scholar
  45. 45.
    Nagaty A, Shakra SE, Ibrahim ST, Mansour OY (1980) Properties of grafted cellulose with vinyl polymers. Cell ChemTechnol 14:177–189Google Scholar
  46. 46.
    Dankovich TA, Gray DG (2011) Contact angle measurements on smooth nanocrystalline cellulose (I) thin films. J Adhes Sci Technol 25:699–708CrossRefGoogle Scholar
  47. 47.
    Nhoa YC, Hyun O (2003) Kwon blood compatibility of AAc, HEMA, and PEGMA-grafted cellulose film. Rad Phys Chem 66:299–307CrossRefGoogle Scholar
  48. 48.
    Suhas DP, Aminabhavi TM, Raghu AV (2014) para-Toluene sulfonic acid treated clay loaded sodium alginate membranes for enhanced pervaporative dehydration of isopropanol. Appl Clay Sci 101:419–429CrossRefGoogle Scholar
  49. 49.
    Dharupaneedi SP, Anjanapura RV, Han JM, Aminabhavi TM (2014) Functionalized graphene sheets embedded in chitosan nanocomposite membranes for ethanol and isopropanol dehydration via pervaporation. Ind Eng Chem Res 53:14474–14484CrossRefGoogle Scholar
  50. 50.
    Suhas DP, Aminabhavi TM, Jeong HM, Raghu AV (2015) Hydrogen peroxide treated graphene as an effective nanosheet filler for separation application. RSC Adv 5:100984–100995CrossRefGoogle Scholar
  51. 51.
    Dahiya N, Tewari R, Hoondal GS (2006) Biotechnological aspects of chitinolytic enzymes: a review. Appl Microbiol Biotechnol 71:773–782CrossRefGoogle Scholar
  52. 52.
    Mohy Eldin MS, Abdel Rahman S, El Fawal GF (2017) Novel immobilized Cu2+ ion grafted cellophane membranes for affinity separation of His-Tag Chitinase. Arab J Chem 10:S3652–S3663CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Polymers Material Research Department, Advanced Technology and New Materials Research InstituteCity of Scientific Research and Technological Applications (SRTA-City)New Borg El-Arab CityEgypt
  2. 2.Department of Chemistry, Faculty of ScienceZagazig UniversityZagazigEgypt

Personalised recommendations