Study of polycarbosilane-supported copper(II) as a heterogeneous catalyst

  • Kunniyur Mangala
  • Krishnapillai SreekumarEmail author
Original Paper


Polycarbosilane containing Cu(II) (Cu-PCS) was prepared. The performance of Cu-PCS as a catalyst was verified using the three-component Biginelli reaction. It was found to be a good catalyst. The product, dihydropyrimidinone, could be easily isolated from the reaction medium. The heterogeneous nature of the catalyst helped in separating the product. The reaction conditions were optimized, and the catalyst was found to be reusable. The catalytic activity of Cu-PCS was compared with that of Cu ion supported on SBA-15 and amorphous silica. Cu-PCS exhibited better catalytic activity, recyclability and was devoid of metal leaching.



One of the authors, Mangala, K. gratefully acknowledges CSIR, New Delhi, India, for the award of Junior Research Fellowship. The authors thank NMR Research Centre, IISc., Bangalore and STIC-CUSAT for various analytical facilities.

Supplementary material

289_2019_2741_MOESM1_ESM.docx (69 kb)
Supplementary material 1 (DOCX 68 kb)


  1. 1.
    Greenberg S, Clendenning SB, Liu K, Manners I (2005) Synthesis and lithographic patterning of polycarbosilanes with pendant cobalt carbonyl clusters. Macromolecules 38(6):2023–2026CrossRefGoogle Scholar
  2. 2.
    Krawiec P, Kockrick E, Borchardt L, Geiger D, Corma A, Kaskel S (2009) Ordered mesoporous carbide derived carbons: novel materials for catalysis and adsorption. J Phys Chem C 113(18):7755–7761CrossRefGoogle Scholar
  3. 3.
    Oyamada H, Akiyama R, Hagio H, Naito T, Kobayashi S (2006) Continuous flow hydrogenation using polysilane-supported palladium/alumina hybrid catalysts. Chem Commun 31:4297–4299CrossRefGoogle Scholar
  4. 4.
    Mangala K, Sreekumar K (2013) Synthesis and application of polycarbosilane supported manganese ions as catalyst in mannich reaction. J Appl Polym Sci 127(1):717–723CrossRefGoogle Scholar
  5. 5.
    Mangala K, Sreekumar K (2013) Polycarbosilane-supported titanium(IV) catalyst for Knoevenagel condensation reaction. Appl Organomet Chem 27(2):73–78CrossRefGoogle Scholar
  6. 6.
    Mangala K, Sinija PS, Sreekumar K (2015) Palladium(II) supported on polycarbosilane: application as reusable catalyst for Heck reaction. J Mol Catal A Chem 407:87–92CrossRefGoogle Scholar
  7. 7.
    Ganicz T, Stanczyk WA, Chmielecka J, Kowalski J (2009) Liquid crystalline polycarbosilanes and poly(di-n-butylsiloxane) as stationary phases in gas chromatography. Polym Int 58(30):248–254CrossRefGoogle Scholar
  8. 8.
    Ganicz T, Stanczyk WA (2000) Vinylsilanes as monomers for side chain polymer liquid crystals. Macromolecules 33(2):289–293CrossRefGoogle Scholar
  9. 9.
    Iseki T, Narisawa M, Katase Y, Oka K, Dohmaru T, Okamura K (2001) An efficient process of cross-linking poly(methylsilane) for SiC. Ceram Chem Mater 13:4163–4169CrossRefGoogle Scholar
  10. 10.
    Wang X, Yuan Y, Graiver D, Cabasso I (2007) Electrosynthesis of linear and branched methylene-bridged oligo- and polycarbosilanes. Macromolecules 40(11):3939–3950CrossRefGoogle Scholar
  11. 11.
    Lee YJ, Lee JH, Kim SR, Kwon WT, Klepeis JP, Teat SJ, Kim YH (2010) Synthesis and characterization of novel preceramic polymer for SIC. J Mater Sci 45(4):1025–1031CrossRefGoogle Scholar
  12. 12.
    Lodhe M, Babu N, Selvam A, Balasubramanian M (2015) Synthesis and characterization of high ceramic yield polycarbosilane precursor for SiC. J Adv Ceram 4(4):307–311CrossRefGoogle Scholar
  13. 13.
    Czubarow P, Sugimoto T, Seyferth D (1998) Sonochemical synthesis of a poly(methylsilane), a precursor for near-stoichiometric SiC. Macromolecules 31(2):229–238CrossRefGoogle Scholar
  14. 14.
    Schilling CL, Hudson CO, William TC, Wesson JP (1985) US Patent 4,497,787Google Scholar
  15. 15.
    Cao F, Kim D, Li X (2002) Preparation of hybrid polymer as a near-stoichiometric SiC precursor by blending of polycarbosilane and polymethysilane. J Mater Chem 12(1):1213–1217CrossRefGoogle Scholar
  16. 16.
    Huang M, Fang Y, Li R, Huang T, Yu Z, Xia H (2009) Synthesis and properties of liquid polycarbosilanes with hyperbranched structures. J Appl Polym Sci 113(3):1611–1618CrossRefGoogle Scholar
  17. 17.
    Choi SH, Youn DY, Jo SM, Oh SG (2011) Micelle-mediated synthesis of single-crystalline β(3C)-SiC fibers via emulsion electrospinning. ACS Appl Mater Interfaces 3(5):1385–1389CrossRefGoogle Scholar
  18. 18.
    Gascon V, Marquez-Alvarez C, Blanco RM (2014) Efficient retention of laccase by non-covalent immobilization on amino-functionalized ordered mesoporous silica. Appl Catal A Gen 482:116–126CrossRefGoogle Scholar
  19. 19.
    Yuan B, Pan Y, Li Y, Yin B, Jiang H (2010) A highly active heterogeneous palladium catalyst for the Suzuki–Miyaura and Ullmann coupling reactions of aryl chlorides in aqueous media. Angew Chem Int Ed 49(24):4054–4058CrossRefGoogle Scholar
  20. 20.
    Jin MJ, Lee DH (2010) A practical heterogeneous catalyst for the Suzuki, Sonogashira, and Stille coupling reactions of unreactive aryl chlorides. Angew Chem Int Ed 49(6):1119–1122CrossRefGoogle Scholar
  21. 21.
    Dvornic PR, Owen MJ (2009) Silicon-containing dendritic polymers. Advances in silicon science, vol 2. Springer, New YorkCrossRefGoogle Scholar
  22. 22.
    Song YC, Hasagawa Y, Yang SJ, Sato M (1988) Ceramic fibres from polymer precursor containing Si–O–Ti bonds. J Mater Sci 23(6):1911–1920CrossRefGoogle Scholar
  23. 23.
    Stepnicka P, Schulz J, Klemann T, Siemeling U, Cisarova I (2010) Synthesis, structural characterization, and catalytic evaluation of palladium complexes with homologous ferrocene-based pyridylphosphine ligands. Organometallics 29(14):3187–3200CrossRefGoogle Scholar
  24. 24.
    Zhao FY, Bhanage BM, Shirai M, Arai M (2000) Heck reactions of iodobenzene and methyl acrylate with conventional supported palladium catalysts in the presence of organic and/and inorganic bases without ligands. Chem Eur J 6(5):843–848CrossRefGoogle Scholar
  25. 25.
    Opanasenko M, Stepnicka P, Cejka J (2014) Heterogeneous Pd catalysts supported on silica matrices. RSC Adv 4:65137–65162CrossRefGoogle Scholar
  26. 26.
    Sharma B, Striegler S (2018) Crosslinked microgels as platform for hydrolytic catalysts. Biomacromolecules 19(4):1164–1174CrossRefGoogle Scholar
  27. 27.
    Wang Y, Yan L, Li C, Jiang M, Wang W, Ding Y (2018) Highly efficient porous organic copolymer supported Rh catalysts for heterogeneous hydroformylation of butenes. Appl Catal A 551:98–105CrossRefGoogle Scholar
  28. 28.
    Xu C, Hu M, Wang Q, Fan G, Wang Y, Zhang Y, Gao D, Bi J (2018) Hyper-cross-linked polymer supported rhodium: an effective catalyst for hydrogen evolution from ammonia borane. Dalton Trans 47:2561–2567CrossRefGoogle Scholar
  29. 29.
    Patel HA, Sawant AM, Rao VJ, Patel AL, Bedekar AV (2017) Polyaniline supported FeCl3: an effective heterogeneous catalyst for Biginelli reaction. Catal Lett 147(9):2306–2312CrossRefGoogle Scholar
  30. 30.
    Puripat M, Ramozzi R, Hatanaka M, Parasuk W, Parasuk V, Morokuma K (2015) The Biginelli reaction is a urea-catalyzed organocatalytic multicomponent reaction. J Org Chem 80(14):6959–6967CrossRefGoogle Scholar
  31. 31.
    Sheykhan M, Yahyazadeh A, Ramezani L (2017) A novel cooperative Lewis acid/Brønsted base catalyst Fe3O4@SiO2-APTMS-Fe(OH)2: an efficient catalyst for the Biginelli reaction. Mol Catal 435:166–173CrossRefGoogle Scholar
  32. 32.
    Palmer G (1967) Electron paramagnetic resonance. Methods Enzymol 10:594–609CrossRefGoogle Scholar
  33. 33.
    Lund A, Shiotani M, Shimida S (2011) Principles and applications of ESR spectroscopy. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied ChemistryCochin University of Science and TechnologyCochinIndia

Personalised recommendations