Influence of the surface modification of titanium dioxide nanoparticles TiO2 under efficiency of silver nanodots deposition and its effect under the properties of starch–chitosan (SC) films

  • Javier Vallejo-Montesinos
  • Juana Gámez-Cordero
  • Ramon Zarraga
  • Ma Cristina Pérez Pérez
  • J. A. Gonzalez-CalderonEmail author
Original Paper


In this work is presented a facile method for the elaboration of starch–chitosan films with functionalized particles of titanium dioxide. The chemical modification of the nanoparticles allows to improve the mechanical properties of the film itself. The films containing the TiO2 functionalized with the alkoxysilane presented an improvement in the tensile strength of 33%. Also, the insertion of silver nanodots reinforces the antimicrobial properties of the starch–chitosan films. This method of fabrication of biodegradable films represents an excellent green choice for possible applications as food packaging due to their mechanical properties.


Titanium dioxide Functionalization Silver nanoparticles Mechanical properties Chitosan Starch 



The authors want to thank Consejo Nacional de Ciencia y Tecnología (CONACyT) for the scholarship granted that allow the fulfillment of this work and Mariana Gisela Peña Juárez for the assistance in the language editing. Amir Gonzalez thanks Tecnologico Nacional de Mexico for the support of the Project 6409.18-P.


  1. 1.
    Bucci DZ, Tavares LBB, Sell I (2005) PHB packaging for the storage of food products. Polym Test 24:564–571. CrossRefGoogle Scholar
  2. 2.
    Rhim J-W, Ng PKW (2007) Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci Nutr 47:411–433. CrossRefGoogle Scholar
  3. 3.
    Sudhakar M, Trishul A, Doble M et al (2007) Biofouling and biodegradation of polyolefins in ocean waters. Polym Degrad Stabil 92:1743. CrossRefGoogle Scholar
  4. 4.
    Avérous L, Pollet E (2012) Environmental silicate nano-biocomposites. Green Energy Technol. CrossRefGoogle Scholar
  5. 5.
    Tang XZ, Kumar P, Alavi S, Sandeep KP (2012) Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials. Crit Rev Food Sci Nutr 52:426–442. CrossRefGoogle Scholar
  6. 6.
    Lian Z, Zhang Y, Zhao Y (2016) Nano-TiO2 particles and high hydrostatic pressure treatment for improving functionality of polyvinyl alcohol and chitosan composite fi lms and nano-TiO2 migration from fi lm matrix in food simulants. Innov Food Sci Emerg Technol 33:145–153. CrossRefGoogle Scholar
  7. 7.
    Tharanathan RN (2003) Biodegradable films and composite coatings: past, present and future. Trends Food Sci Technol 14:71–78. CrossRefGoogle Scholar
  8. 8.
    Dang QF, Zou SH, Chen XG, et al (2012) Characterizations of chitosan-based highly porous hydrogel: the effects of the solvent.
  9. 9.
    Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632. CrossRefGoogle Scholar
  10. 10.
    Zhang W, Chen J, Chen Y et al (2016) Enhanced physicochemical properties of chitosan/whey protein isolate composite film by sodium laurate-modified TiO2 nanoparticles. Carbohydr Polym 138:59–65. CrossRefGoogle Scholar
  11. 11.
    Zhang X, Xiao G, Wang Y et al (2017) Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydr Polym 169:101–107. CrossRefGoogle Scholar
  12. 12.
    Tripathi S, Mehrotra GK, Dutta PK (2009) Physicochemical and bioactivity of cross-linked chitosan–PVA film for food packaging applications. Int J Biol Macromol 45:372–376. CrossRefGoogle Scholar
  13. 13.
    Kim KM, Son JH, Kim S et al (2006) Properties of chitosan films as a function of pH and solvent type. J Food Sci E Food Eng Phys Prop 71:119–124. Google Scholar
  14. 14.
    Caner C, Vergano PJ, Wiles JL (1998) chitosan film mechanical and permeation properties as affected by acid, plasticizer, and storage. J Food Sci 63:1049–1053. CrossRefGoogle Scholar
  15. 15.
    Rao MS, Kanatt SR, Chawla SP, Sharma A (2010) Chitosan and guar gum composite films: preparation, physical, mechanical and antimicrobial properties. Carbohydr Polym 82:1243–1247. CrossRefGoogle Scholar
  16. 16.
    Pinotti A, García MA, Martino MN, Zaritzky NE (2007) Study on microstructure and physical properties of composite films based on chitosan and methylcellulose. Food Hydrocoll 21:66–72. CrossRefGoogle Scholar
  17. 17.
    Niroomand F, Khosravani A, Younesi H (2016) Fabrication and properties of cellulose–nanochitosan biocomposite film using ionic liquid. Cellulose 23:1311–1324. CrossRefGoogle Scholar
  18. 18.
    Diebold U (2003) The surface science of titanium dioxide. Appl Surf Sci 48:53–229. Google Scholar
  19. 19.
    Bonhôte P, Gogniat E, Grätzel M, Ashrit P (1999) Novel electrochromic devices based on complementary nanocrystalline TiO2 and WO3 thin films. Thin Solid Films 350:269–275. CrossRefGoogle Scholar
  20. 20.
    Solís-Gómez A, Neira-Velázquez MG, Morales J et al (2014) Improving stability of TiO2 particles in water by RF-plasma polymerization of poly(acrylic acid) on the particle surface. Colloids Surf A Physicochem Eng Asp 451:66–74. CrossRefGoogle Scholar
  21. 21.
    Clayton J (1997) Pigment/dispersant interactions in water-based coatings. Surf Coat Int 80:414–420. CrossRefGoogle Scholar
  22. 22.
    Kulkarni SA, Ogale SB, Vijayamohanan KP (2008) Tuning the hydrophobic properties of silica particles by surface silanization using mixed self-assembled monolayers. J Colloid Interface Sci 318:372–379. CrossRefGoogle Scholar
  23. 23.
    Han X, Wang L, Li J et al (2011) Tuning the hydrophobicity of ZSM-5 zeolites by surface silanization using alkyltrichlorosilane. Appl Surf Sci 257:9525–9531. CrossRefGoogle Scholar
  24. 24.
    González A, Pérez E, Almendarez A et al (2016) Calcium pimelate supported on TiO2 nanoparticles as isotactic polypropylene prodegradant. Polym Bull 73:39–51. CrossRefGoogle Scholar
  25. 25.
    Quiñones-jurado ZV, Waldo-mendoza MÁ, Aguilera-bandin HM et al (2014) silver nanoparticles supported on TiO2 and their antibacterial properties: effect of surface confinement and nonexistence of plasmon resonance. Mater Sci Appl 5:895–903Google Scholar
  26. 26.
    Mosquera A (2008) Obtención de nano-estructuras bi-dimensionales de SnO2 utilizando el método pechini: estudio de la conformación de la resina. Cerámica y Vidrio estudio de la conformación de la resina 286:278–286Google Scholar
  27. 27.
    Majoul N, Aouida S, Bessaïs B, Si S- (2015) Applied surface science progress of porous silicon APTES-functionalization by FTIR investigations. Appl Surf Sci 331:388–391CrossRefGoogle Scholar
  28. 28.
    Taguchi M, Takami S, Naka T, Adschiri T (2009) Growth mechanism and surface chemical characteristics of dicarboxylic acid-modified CeO2 nanocrystals produced in supercritical water: tailor-made water-soluble CeO2 nanocrystals. Cryst Growth Des 9:5297–5303. CrossRefGoogle Scholar
  29. 29.
    Somphon W, Haller KJ (2013) Crystal growth and physical characterization of picolinic acid cocrystallized with dicarboxylic acids. J Cryst Growth 362:252–258. CrossRefGoogle Scholar
  30. 30.
    Mosquera E, Rosas N, Debut A et al (2015) Síntesis y Caracterización de Nanopartículas de Dióxido de Titanio Obtenidas por el Método de Sol-Gel. Revis Politéc 36:7Google Scholar
  31. 31.
    Mart F, Mart JR (2008) Characterization of silver nanoparticles synthesized on titanium dioxide fine particles. Nanotechnology 19:065711. CrossRefGoogle Scholar
  32. 32.
    Díaz-Visurraga J, Meléndrez MF, García A et al (2010) Semitransparent chitosan-TiO2 nanotubes composite film for food package applications. J Appl Polym Sci 116:3503–3515. Google Scholar
  33. 33.
    Bourtoom T, Chinnan MS (2008) Preparation and properties of rice starch–chitosan blend biodegradable film. LWT Food Sci Technol 41:1633–1641. CrossRefGoogle Scholar
  34. 34.
    Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678. CrossRefGoogle Scholar
  35. 35.
    Dias AB, Müller CMO, Larotonda FDS, Laurindo JB (2010) Biodegradable films based on rice starch and rice flour. J Cereal Sci 51:213–219. CrossRefGoogle Scholar
  36. 36.
    Salam A, Pawlak JJ, Venditti RA, El-Tahlawy K (2010) Synthesis and characterization of starch citrate–chitosan foam with superior water and saline absorbance properties. Biomacromol 11:1453–1459. CrossRefGoogle Scholar
  37. 37.
    Zhong Y, Song X, Li Y (2011) Antimicrobial, physical and mechanical properties of kudzu starch–chitosan composite films as a function of acid solvent types. Carbohydr Polym 84:335–342. CrossRefGoogle Scholar
  38. 38.
    Reidy B, Haase A, Luch A et al (2013) Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6:2295–2350. CrossRefGoogle Scholar
  39. 39.
    Li J, Zivanovic S, Davidson PM, Kit K (2010) Characterization and comparison of chitosan/PVP and chitosan/PEO blend films. Carbohydr Polym 79:786–791. CrossRefGoogle Scholar
  40. 40.
    Ojagh SM, Rezaei M, Razavi SH, Hosseini SMH (2010) Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chem 120:193–198. CrossRefGoogle Scholar
  41. 41.
    Vargas M, Albors A, Chiralt A, González-Martínez C (2009) Characterization of chitosan–oleic acid composite films. Food Hydrocoll 23:536–547. CrossRefGoogle Scholar
  42. 42.
    Lu DR, Xiao CM, Xu SJ (2009) Starch-based completely biodegradable polymer materials. Express Polym Lett 3:366–375. CrossRefGoogle Scholar
  43. 43.
    Llanos JHR, Tadini CC (2018) Preparation and characterization of bio-nanocomposite films based on cassava starch or chitosan, reinforced with montmorillonite or bamboo nanofibers. Int J Biol Macromol 107:371–382. CrossRefGoogle Scholar
  44. 44.
    Lozano-Navarro IJ, Díaz-Zavala PN, Velasco-Santos C et al (2018) Chitosan-starch films with natural extracts: physical, chemical. Morphol Thermal Prop, Mater, p 11Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.División de Ciencias Naturales y Exactas, Campus Guanajuato, Departamento de QuímicaUniversidad de GuanajuatoGuanajuatoMexico
  2. 2.Departamento de Ingeniería BioquímicaInstituto Tecnológico de CelayaCelayaMexico
  3. 3.Departamento de Ingeniería IndustrialInstituto Tecnológico de CelayaCelayaMexico
  4. 4.Cátedras CONACYT-Instituto de FísicaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico

Personalised recommendations