Advertisement

The influence of 1,4-cyclohexanedicarboxylic acid on the thermal and mechanical properties of copolyamides

  • Chin-Wen Chen
  • Chiao-Wei Lin
  • Yu-Haw Chen
  • Tung-Fan Wei
  • Syang-Peng RweiEmail author
  • Ragu Sasikumar
Original Paper
  • 5 Downloads

Abstract

The present paper describes the novel aliphatic polyamide 6 (PA6) copolyamides by the melt polymerization reaction of our newly synthesized aliphatic diamine monomer: N1,N6-Bis-(2-aminoethyl)adipamide (BAEA). The BAEA/CHDA (1,4-cyclohexanedicarboxylic acid) salt was prepared by pertinent long-chain polyamide with the cycloaliphatic ring and isolated as white solid, utterly characterized for the first time. The chemical structure of BAEA, BAEA/CHDA salt and copolyamides (PA6-BAEA/CHDA) was identified by 1H NMR and FT-IR spectroscopy. Depending on the chemical compositions, the viscosity and molecular weight of the copolyamides were in the range of 19,447–13,536 g mol−1 and 2.74–2.2 dL g−1. With increasing BAEA/CHDA salt molar ratio in the synthesized copolyamides, their melting temperatures (Tm) decreased from 212.7 to 170.4 °C, and the glass transition temperatures (Tg) increased from 60 to 89.4 °C. Besides, the as-synthesized all copolyamides possess nearly similar thermal stability (Td-50% = 439.59 − 443.38 °C) as neat PA6. Mechanical testing data revealed that with an increase in a proportion of BAEA/CHDA salt, Young’s modulus of copolyamides is increased from 698.54 to 1093.89 MPa, while the tensile strength is increased by 8.1%.

Keywords

BAEA diamine CHDA Higher thermal stability PA6 copolyamides 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from the National Science Council of Taiwan (MOST 107-3017-F-027-001)

References

  1. 1.
    Carothers WH, County C, de Nemours (1937) Linear condensation polymers, pp 1–10Google Scholar
  2. 2.
    García JM, García FC, Serna F, de la Peña JL (2010) High-performance aromatic polyamides. Prog Polym Sci 35:623–686.  https://doi.org/10.1016/j.progpolymsci.2009.09.002 CrossRefGoogle Scholar
  3. 3.
    Aramaki M, Maekawa T (2005) Polyamide, pp 1–14Google Scholar
  4. 4.
    Penel-Pierron L, Depecker C, Seguela RR, Lefebvre J-M (2001) Structural and mechanical behavior of nylon 6 films part I. Identification and stability of the crystalline phases. J Polym Sci B Polym Phys 39:484–495.  https://doi.org/10.1002/1099-0488(20010301)39:5%3c484:AID-POLB1022%3e3.0.CO;2-R CrossRefGoogle Scholar
  5. 5.
    Nitto Y, Ieda S, Terada K, Aramaki M (2015) Polyamide and polyamide composite, pp 1–21Google Scholar
  6. 6.
    Yoon WJ, Oh KS, Koo JM et al (2013) Advanced polymerization and properties of biobased high T g polyester of isosorbide and 1,4-cyclohexanedicarboxylic acid through in situ acetylation. Macromolecules 46:2930–2940.  https://doi.org/10.1021/ma4001435 CrossRefGoogle Scholar
  7. 7.
    Jackson WJ, Gray TF, Caldwell JR (1970) Polyester hot-melt adhesives. I. Factors affecting adhesion to epoxy resin coatings. J Appl Polym Sci 14:685–698.  https://doi.org/10.1002/app.1970.070140313 CrossRefGoogle Scholar
  8. 8.
    Chen LP, Yee AF, Goetz JM, Schaefer J (1998) Molecular structure effects on the secondary relaxation and impact strength of a series of polyester copolymer glasses. Macromolecules 31:5371–5382.  https://doi.org/10.1021/ma971671t CrossRefGoogle Scholar
  9. 9.
    Liu J, Yee AF (1998) Enhancing Plastic yielding in polyestercarbonate glasses by 1,4-cyclohexylene linkage addition. Macromolecules 31:7865–7870.  https://doi.org/10.1021/ma980370w CrossRefGoogle Scholar
  10. 10.
    Vanhaecht B, Goderis B, Magusin PCMM et al (2005) stereochemistry driven distribution of 1,4-diaminocyclohexane residues over the crystalline and amorphous phase in copolyamides 4.14/1,4-DACH.14. a solid-state NMR and temperature-dependent WAXD study. Macromolecules 38:6048–6055.  https://doi.org/10.1021/ma0500685 CrossRefGoogle Scholar
  11. 11.
    Vanhaecht B, Teerenstra MN, Suwier DR et al (2001) Controlled stereochemistry of polyamides derived from cis/trans-1,4-cyclohexanedicarboxylic acid. J Polym Sci A Polym Chem 39:833–840.  https://doi.org/10.1002/1099-0518(20010315)39:6%3c833:AID-POLA1056%3e3.0.CO;2-5 CrossRefGoogle Scholar
  12. 12.
    Vanhaecht B, Willem R, Biesemans M et al (2004) A WAXD and solid-state NMR study on cocrystallization in partially cycloaliphatic polyamide 12.6-based copolymers. Macromolecules 37:421–428.  https://doi.org/10.1021/ma035103r CrossRefGoogle Scholar
  13. 13.
    Koning C, Vanhaecht B, Willem R et al (2003) Stereochemistry driven cocrystallization phenomena in partially cycloaliphatic polyamides. Macromol Symp 199:431–442.  https://doi.org/10.1002/masy.200350936 CrossRefGoogle Scholar
  14. 14.
    Berti C, Binassi E, Celli A et al (2008) Poly(1,4-cyclohexylenedimethylene 1,4-cyclohexanedicarboxylate): influence of stereochemistry of 1,4-cyclohexylene units on the thermal properties. J Polym Sci B Polym Phys 46:619–630.  https://doi.org/10.1002/polb.21397 CrossRefGoogle Scholar
  15. 15.
    Berti C, Celli A, Marchese P et al (2008) Influence of molecular structure and stereochemistry of the 1,4-cyclohexylene ring on thermal and mechanical behavior of poly(butylene 1,4-cyclohexanedicarboxylate). Macromol Chem Phys 209:1333–1344.  https://doi.org/10.1002/macp.200800125 CrossRefGoogle Scholar
  16. 16.
    Frunze TM, Korshak VV, Kurashev VV (1960) Organophosphorus polymers—VI. Polyamides of several phosphorus-containing dicarboxylic acids. Polym Sci USSR 1:239–246.  https://doi.org/10.1016/0032-3950(60)90254-9 CrossRefGoogle Scholar
  17. 17.
    Liu F, Qiu J, Wang J et al (2016) Role of cis-1,4-cyclohexanedicarboxylic acid in the regulation of the structure and properties of a poly(butylene adipate-co-butylene 1,4-cyclohexanedicarboxylate) copolymer. RSC Adv 6:65889–65897.  https://doi.org/10.1039/C6RA13495E CrossRefGoogle Scholar
  18. 18.
    Fortunati E, Gigli M, Luzi F et al (2016) Poly(butylene cyclohexanedicarboxylate/diglycolate) random copolymers reinforced with SWCNTs for multifunctional conductive biopolymer composites. Express Polym Lett 10:111–124.  https://doi.org/10.3144/expresspolymlett.2016.12 CrossRefGoogle Scholar
  19. 19.
    Celli A, Marchese P, Sullalti S et al (2011) Eco-FRIENDLY Poly(butylene 1,4-cyclohexanedicarboxylate): relationships between stereochemistry and crystallization behavior. Macromol Chem Phys 212:1524–1534.  https://doi.org/10.1002/macp.201100052 CrossRefGoogle Scholar
  20. 20.
    Rwei S-P, Ranganathan P, Chiang W-Y, Lee Y-H (2018) Synthesis and characterization of copolyamides derived from novel aliphatic bio-based diamine. J Appl Polym Sci 135:46878.  https://doi.org/10.1002/app.46878 CrossRefGoogle Scholar
  21. 21.
    Rwei S-P, Ranganathan P, Chiang W-Y, Lee Y-H (2018) Synthesis of low melting temperature aliphatic-aromatic copolyamides derived from novel bio-based semi aromatic monomer. Polymers 10:793.  https://doi.org/10.3390/polym10070793 CrossRefGoogle Scholar
  22. 22.
    Brown CJ (1966) Further refinement of the crystal structure of hexamethylenediammonium adipate. Acta Crystallogr A 21:185–190.  https://doi.org/10.1107/S0365110X66002585 CrossRefGoogle Scholar
  23. 23.
    Cakir S, Jasinska-Walc L, Villani M et al (2015) Morphology and local chain structure of polyamide 6 modified in the solid state with a semi-aromatic nylon salt. Mater Today Commun 2:e62–e69.  https://doi.org/10.1016/j.mtcomm.2014.12.002 CrossRefGoogle Scholar
  24. 24.
    Jasinska L, Villani M, Wu J et al (2011) Novel, fully biobased semicrystalline polyamides. Macromolecules 44:3458–3466.  https://doi.org/10.1021/ma200256v CrossRefGoogle Scholar
  25. 25.
    Griehl W, Ruestem D (1970) Nylon-12-preparation, properties, and applications. Ind Eng Chem 62:16–22.  https://doi.org/10.1021/ie50723a005 CrossRefGoogle Scholar
  26. 26.
    Rulkens R, Koning C (2012) Chemistry and technology of polyamides. In: Matyjaszewski K, Moller M (eds) Polymer science: a comprehensive reference. Elsevier, Amsterdam, pp 431–467CrossRefGoogle Scholar
  27. 27.
    McKeen L (2012) Polyamides (nylons). In: The effect of sterilization on plastics and elastomers. Elsevier, Amsterdam, pp 183–199Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Organic and Polymeric MaterialsNational Taipei University of TechnologyTaipeiTaiwan, ROC
  2. 2.Research and Development Center of Smart Textile TechnologyNational Taipei University of TechnologyTaipeiTaiwan, ROC

Personalised recommendations