Advertisement

Alginate derivative-functionalized silica nanoparticles: surface modification and characterization

  • Huiqiong Yan
  • Xiuqiong Chen
  • Chaoling Bao
  • Shuxian Wu
  • Songming He
  • Qiang LinEmail author
Original Paper
  • 4 Downloads

Abstract

The bare silica nanoparticles (SiO2 NPs) synthesized by Stöber method is very hydrophilic and chemically inert, which may suffer from particles aggregation and low biocompatibility when they are used in physiological media. For this case, we attempted to conduct surface functionalization of SiO2 NPs by Ugi multicomponent reaction, using amphiphilic amidic alginate derivative (AAD) as the modifier. The successful synthesis of amidic alginate derivative-functionalized silica nanoparticles (AAD-SiO2 NPs) was confirmed by FT-IR spectroscopy, 1H NMR spectrometer, X-ray photoelectron spectroscopy and thermal gravimetric analysis. The covalent bonding of alginate derivative onto the surface of SiO2 NPs increased their average diameter and zeta potential, which effectively improved their colloidal stability in PBS. Additionally, surface tension measurements and cell studies results revealed that the resultant AAD-SiO2 NPs possessed relatively high surface activity and cytocompatibility, which exhibited great potential in the biomedical field.

Keywords

Nanoparticles Polymers Ugi reaction Silica Amidic alginate derivative 

Notes

Acknowledgements

This work was financially supported by the Natural Science Foundation of Hainan Province (218QN233) and the National Natural Science Foundation of China (21566009).

References

  1. 1.
    Björkegren SMS, Nordstierna L, Törncrona A, Persson ME, Palmqvist AEC (2015) Surface activity and flocculation behavior of polyethylene glycol-functionalized silica nanoparticles. J Colloid Interface Sci 452:215–223CrossRefGoogle Scholar
  2. 2.
    Wan Y, Liu P, Zhang C, Yang Z, Xiong G, Zheng X, Luo H (2015) Synthesis of a three-dimensional network-structured scaffold built of silica nanotubes for potential bone tissue engineering applications. J Alloy Compd 647:711–719CrossRefGoogle Scholar
  3. 3.
    Stark WJ (2011) Nanoparticles in biological systems. Angew Chem Int Ed 50:1242–1258CrossRefGoogle Scholar
  4. 4.
    Mailänder V, Landfester K (2009) Interaction of nanoparticles with cells. Biomacromolecules 10:2379–2400CrossRefGoogle Scholar
  5. 5.
    Graf C, Gao Q, Schütz I, Noufele CN, Noufele W, Posselt U, Korotianskiy E, Nordmeyer D, Rancan F, Hadam S, Vogt A, Lademann J, Haucke V, Rühl E (2012) Surface functionalization of silica nanoparticles supports colloidal stability in physiological media and facilitates internalization in cells. Langmuir 28:7598–7613CrossRefGoogle Scholar
  6. 6.
    Rio-Echevarria IM, Selvestrel F, Segat D, Guarino G, Tavano R, Causin V, Reddi E, Papini E, Mancin F (2010) Highly PEGylated silica nanoparticles: “ready to use” stealth functional nanocarriers. J Mater Chem 20:2780–2787CrossRefGoogle Scholar
  7. 7.
    Liufu S, Xiao H, Li Y (2005) Adsorption of cationic polyelectrolyte at the solid/liquid interface and dispersion of nanosized silica in water. J Colloid Interface Sci 285:33–40CrossRefGoogle Scholar
  8. 8.
    Bagwe RP, Hilliard LR, Tan W (2006) Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 22:4357–4362CrossRefGoogle Scholar
  9. 9.
    Radhakrishnan B, Ranjan R, Brittain WJ (2006) Surface initiated polymerizations from silica nanoparticles. Soft Matter 2:386–396CrossRefGoogle Scholar
  10. 10.
    Nypelö T, Österberg M, Zu X, Laine J (2011) Preparation of ultrathin coating layers using surface modified silica nanoparticles. Colloid Surf A 392:313–321CrossRefGoogle Scholar
  11. 11.
    Wu Z, Liang J, Ji X, Yang W (2011) Preparation of uniform Au@SiO2 particles by direct silica coating on citrate-capped Au nanoparticles. Colloid Surf A 392:220–224CrossRefGoogle Scholar
  12. 12.
    Li X, Hong C, Pan C (2010) Preparation and characterization of hyperbranched polymer grafted mesoporous silica nanoparticles via self-condensing atom transfer radical vinyl polymerization. Polymer 51:92–99CrossRefGoogle Scholar
  13. 13.
    Li D, Sheng X, Zhao B (2005) Environmentally responsive “hairy” nanoparticles: mixed homopolymer brushes on silica nanoparticles synthesized by living radical polymerization techniques. J Am Chem Soc 127:6248–6256CrossRefGoogle Scholar
  14. 14.
    Zhao B, Zhu L (2009) Mixed polymer brush-grafted particles: a new class of environmentally responsive nanostructured materials. Macromolecules 42:9369–9383CrossRefGoogle Scholar
  15. 15.
    Wuelfing WP, Gross SM, Miles DT, Murray RW (1998) Nanometer gold clusters protected by surface-bound monolayers of thiolated poly(ethylene glycol) polymer electrolyte. J Am Chem Soc 120:12696–12697CrossRefGoogle Scholar
  16. 16.
    Zhong B, Jia Z, Luo Y, Jia D (2015) Surface modification of silica with N-cyclohexyl-2-benzothiazole sulfenamide for styrene-butadiene rubber composites with dramatically improved mechanical property. Mater Lett 145:41–43CrossRefGoogle Scholar
  17. 17.
    Ugi DDI (1962) The α-addition of immonium ions and anions to isonitriles accompanied by secondary reactions. Angew Chem Int Ed 1:8–21CrossRefGoogle Scholar
  18. 18.
    Kodiyan A, Silva EA, Kim J, Aizenberg M, Mooney DJ (2012) Surface modification with alginate-derived polymers for stable, protein-repellent, long-circulating gold nanoparticles. ACS Nano 6(6):4796–4805CrossRefGoogle Scholar
  19. 19.
    Yan H, Chen X, Li J, Feng Y, Shi Z, Wang X, Lin Q (2016) Synthesis of alginate derivative via the Ugi reaction and its characterization. Carbohydr Polym 136:757–763CrossRefGoogle Scholar
  20. 20.
    Yan H, Chen X, Li J, Feng Y, Wu J, Lin Q, Shi Z, Wang X (2016) Synthesis of amidic alginate derivatives modified silica nanoparticles via Ugi multicomponent reaction. Chem J Chin Univ 37:1018–1024Google Scholar
  21. 21.
    Chen K, Yu G, He F, Zhou Q, Xiao D, Li J, Feng Y (2017) A pH-responsive emulsion stabilized by alginate-grafted anisotropic silica and its application in the controlled release of λ-cyhalothrin. Carbohyd Polym 176:203–213CrossRefGoogle Scholar
  22. 22.
    Zhao X, Yu G, Li J, Feng Y, Zhang L, Peng Y, Tang Y, Wang L (2018) Eco-friendly Pickering emulsion stabilized by silica nanoparticles dispersed with high-molecular-weight amphiphilic alginate derivatives. ACS Sustain Chem Eng 6:4105–4114CrossRefGoogle Scholar
  23. 23.
    Chen X, Yan H, Sun W, Feng Y, Li J, Lin Q, Shi Z, Wang X (2015) Synthesis of amphiphilic alginate derivatives and electrospinning blend nanofibers: a novel hydrophobic drug carrier. Polym Bull 72:3097–3117CrossRefGoogle Scholar
  24. 24.
    An Y, Chen M, Xue Q, Liu W (2007) Preparation and self-assembly of carboxylic acid-functionalized silica. J Colloid Interface Sci 311:507–513CrossRefGoogle Scholar
  25. 25.
    Bu H, Kjøniksen AL, Knudsen KD, Nyström B (2004) Rheological and structural properties of aqueous alginate during gelation via the Ugi multicomponent condensation reaction. Biomacromolecules 5:1470–1479CrossRefGoogle Scholar
  26. 26.
    Yan H, Chen X, Shi J, Shi Z, Sun W, Lin Q, Wang X, Dai Z (2017) Fabrication and evaluation of chitosan/NaYF4:Yb3+/Tm3+ upconversion nanoparticles composite beads based on the gelling of Pickering emulsion droplets. Mater Sci Eng C 71:51–59CrossRefGoogle Scholar
  27. 27.
    Ahmada N, Ramsch R, Llinàs M, Solans C, Hashim R, Tajuddin HA (2014) Influence of nonionic branched-chain alkyl glycosides on a model nano-emulsion for drug delivery systems. Colloid Surf B 115:267–274CrossRefGoogle Scholar
  28. 28.
    Islam MS, Karim MR (2010) Fabrication and characterization of poly (vinyl alcohol)/alginate blend nanofibers by electrospinning method. Colloid Surf A 366:135–140CrossRefGoogle Scholar
  29. 29.
    Yang JS, Ren HB, Xie YJ (2011) Synthesis of amidic alginate derivatives and their application in microencapsulation of λ-cyhalothrin. Biomacromolecules 12:2982–2987CrossRefGoogle Scholar
  30. 30.
    Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G (2011) A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334:75–79CrossRefGoogle Scholar
  31. 31.
    Liu YL, Wu YH, Tsai WB, Tsai CC, Chen WS, Wu CS (2011) Core–shell silica@chitosan nanoparticles and hollow chitosan nanospheres using silica nanoparticles as templates: preparation and ultrasound bubble application. Carbohyd Polym 84:770–774CrossRefGoogle Scholar
  32. 32.
    Kang H, Shu Y, Li Z, Guan B, Peng S, Huang Y, Liu R (2014) An effect of alginate on the stability of LDH nanosheets in aqueous solution and preparation of alginate/LDH nanocomposites. Carbohyd Polym 100:158–165CrossRefGoogle Scholar
  33. 33.
    Tkachenko NH, Yaremko ZM, Bellmann C, Soltys MM (2006) The influence of ionic and nonionic surfactants on aggregative stability and electrical surface properties of aqueous suspensions of titanium dioxide. J Colloid Interface Sci 299:686–695CrossRefGoogle Scholar
  34. 34.
    Yan H, Huang D, Chen X, Liu H, Feng Y, Zhao Z, Dai Z, Zhang X, Lin Q (2018) A novel and homogeneous scaffold material: preparation and evaluation of alginate/bacterial cellulose nanocrystals/collagen composite hydrogel for tissue engineering. Polym Bull 75:985–1000CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Huiqiong Yan
    • 1
    • 2
  • Xiuqiong Chen
    • 1
    • 2
  • Chaoling Bao
    • 2
  • Shuxian Wu
    • 2
  • Songming He
    • 2
  • Qiang Lin
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical EngineeringHainan Normal UniversityHaikouChina
  2. 2.Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical EngineeringHainan Normal UniversityHaikouChina

Personalised recommendations