Viscoelastic evaluation of epoxy nanocomposite based on carbon nanofiber obtained from electrospinning processing

  • Juliana Bovi de OliveiraEmail author
  • Lília Müller Guerrini
  • Luíza dos Santos Conejo
  • Mirabel Cerqueira Rezende
  • Edson Cocchieri Botelho
Original Paper


In recent years, carbon nanofiber composites have attracted researchers worldwide to use in reinforcing nanofillers instead of traditional methods due mainly to their multifunctional properties. Carbon nanofibers promote good thermal conductivity, high surface area, high chemical stability and good mechanical resistance when associated with epoxy resin, for example, being excellent candidates for the acquisition of advanced composites. The production of blankets made of interconnected fibers with diameters of micrometers and nanometers can be obtained by the electrospinning process using a polymer solution. This work has as main objective the production of carbon nanofibers, using as precursor the polyacrylonitrile (PAN) blanket obtained by the electrospinning process through polymer solution and subsequent carbonization aiming applications as reinforcement in polymer composites. The fibers obtained by the electrospinning technique and subsequently passed through the carbonization process were characterized by scanning electron microscopy (SEM), which showed a decrease in the size of the fibers after carbonization, and by Fourier transform infrared spectroscopy, where a chemical change in the structure of the PAN was observed after its carbonization. The nanocomposite of epoxy resin/carbon nanofibers was characterized by dynamic mechanical analyses and thermomechanical analyses. The epoxy resin/carbon nanofiber composite presented a glass transition temperature (Tg) in the range from 108.9 to 135.5 °C and a linear thermal expansion coefficient within the range of 68 × 10−6/°C and 408 × 10−6/°C.


Carbon nanofiber composite Polyacrylonitrile Electrospinning Carbonization 



This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.


  1. 1.
    Wang Q et al (2012) A review on application of carbonaceous materials and carbon matrix composites for heat exchangers and heat sinks. Int J Refrig 35:7–26. CrossRefGoogle Scholar
  2. 2.
    Strelko VV, Stavitskaya SS, Gorlov YI (2014) Proton catalysis with active carbons and partially pyrolyzed carbonaceous materials. Chin J Catal 35:815–823. CrossRefGoogle Scholar
  3. 3.
    You PY, Kamarudin SK (2017) Recent progress of carbonaceous materials in fuel cell applications: an overview. Chem Eng J 309:489–502. CrossRefGoogle Scholar
  4. 4.
    Hou LG et al (2017) Microstructure, mechanical properties and thermal conductivity of the short carbon fiber reinforced magnesium matrix composites. J Alloys Compd 695:2820–2826. CrossRefGoogle Scholar
  5. 5.
    Smith SC, Rodrigues DF (2015) Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications. Carbon 91:122–143. CrossRefGoogle Scholar
  6. 6.
    Zhu X et al (2015) Application of nanomaterials in the bioanalytical detection of disease-related genes. Biosens Bioelectron 74:113–133. CrossRefGoogle Scholar
  7. 7.
    Mapkar JA (2008) Effect of elastomer functionalized carbon nanofibers on the properties of polyamide nanocomposite and polydimethylsiloxane-carbon nanofiber sheets. Dissertation, The University of Toledo, Toledo, SpainGoogle Scholar
  8. 8.
    Zhang L et al (2014) A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J Mater Sci 49:463–480. CrossRefGoogle Scholar
  9. 9.
    Peng S et al (2016) Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage. Nano Energy 22:361–395. CrossRefGoogle Scholar
  10. 10.
    Laborda F et al (2016) Detection, characterization and quantification of inorganic engineered nanomaterials: a review of techniques and methodological approaches for the analysis of complex samples. Anal Chim Acta 904:10–36. CrossRefGoogle Scholar
  11. 11.
    Nur Y, Ellie B (2016) Carbon nanofibers in cement composites: mechanical reinforcement. In: Innovative developments of advanced multifunctional nanocomposites in civil and structural engineering, pp 47–58.
  12. 12.
    Zhou Y et al (2016) Carbon nanofiber yarns fabricated from co-electrospun nanofibers. Mater Des 95:591–598. CrossRefGoogle Scholar
  13. 13.
    Saba N et al (2017) Mechanical, morphological and structural properties of cellulose nanofibers reinforced epoxy composites. Int J Biol Macromol 97:190–200. CrossRefGoogle Scholar
  14. 14.
    Davanzo DL, Venancio EC (2014) Produção de nano-e micro-fibras de poliacrilonitrila obtidas por meio de eletrofiação. 21° Brazilian Congress of Materials Engineering and Science (CBEiMat), 2014. Cuiabá - MT. IOP Publishing Metallum. Accessed 07 July 2017
  15. 15.
    Liu KC et al (2015) Effect of carbonization temperature on properties of aligned electrospun polyacrylonitrile carbon nanofibers. Mater Des 85:483–486. CrossRefGoogle Scholar
  16. 16.
    Shi Y et al (2015) Electrospun polyacrylonitrile nanofibers loaded with silver nanoparticles by silver mirror reaction. Mater Sci Eng C 51:346–355. CrossRefGoogle Scholar
  17. 17.
    Ribeiro RF et al (2015) Thermal Stabilization study of polyacrylonitrile fiber obtained by extrusion. Polímeros 25:523–530. CrossRefGoogle Scholar
  18. 18.
    Silverstein RM, Webster FX, Kiemle DJ (2007) Identificação Espectrométrica de Compostos Orgânicos. LTC, Rio de Janeiro, pp 70–122Google Scholar
  19. 19.
    Wahab JA et al (2019) Sonication induced effsctive approach for coloration of compact polyacrylonitrile (PAN) nanofibers. Ultrason Sonochem 51:399–405. CrossRefGoogle Scholar
  20. 20.
    Alarifi IM et al (2015) Thermal, electrical and surface hydrophobic properties of electrospun polyacrylonitrile nanofibers for structural health monitoring. Materials 8:7017–7031. CrossRefGoogle Scholar
  21. 21.
    Canevarolo SV Jr (2007) Técnicas de Caracterização de Polímeros. Artliber Editora Ltda, São Paulo, pp 165–228Google Scholar
  22. 22.
    Romanzini D (2012) Desenvolvimento e Caracterização Mecânica e Dinâmico-Mecânica de Compósitos Poliméricos Híbridos (Vidro/Ramie) Moldados por Transferência de Resina. Dissertation, University of Caxias do Sul. Caxias do SulGoogle Scholar
  23. 23.
    Rezende MC, Costa ML, Botelho EC (2011) Compósitos Estruturais: Tecnologia e Prática. Artliber, São Paulo, pp 34–37Google Scholar
  24. 24.
    Cassu SN, Felisberti MI (2005) Dynamic mechanical behavior and relaxations in polymers and polymeric blends. Quim Nova 28:255–263. CrossRefGoogle Scholar
  25. 25.
    Susin SB et al (2009) Nanocompósitos: Dispersão Mecânica de Nanotubos de Carbono de Paredes Múltiplas em Resina Epóxi. IOP Publishing Docplayer. Accessed 25 May 2017
  26. 26.
    Lebrão G. W (2013) Processamento e Caracterização de Material Compósito Polimérico Obtido com Nanotubo de Carbono Funcionalizado. Thesis, University of São PauloGoogle Scholar
  27. 27.
    Paiva JMF et al (2006) Avaliação da Temperatura de Transição Vítrea de Compósitos Poliméricos Reparados de Uso Aeronáutico. Polímeros 16:79–87. CrossRefGoogle Scholar
  28. 28.
    Bandeira C. F (2015) Obtenção e Caracterização de Compósitos de Benzoxazina/Fibra de Carbono. Thesis, Universidade Estadual Paulista, Faculdade de Engenharia de Guaratinguetá. GuaratinguetáGoogle Scholar
  29. 29.
    Callister WD Jr (2007) Materials science and engineering: an introduction, 7th edn. Wiley, New YorkGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Engineering, Materials and Technology DepartmentUniversidade Estadual Paulista (UNESP)GuaratinguetáBrazil
  2. 2.Universidade Federal de São Paulo (UNIFESP)São José dos CamposBrazil

Personalised recommendations