Advertisement

Montmorillonite–triclosan hybrid as effective antibacterial additive with enhanced thermal stability for protection of plastic electrical components

  • Renata Porebska
  • Andrzej RybakEmail author
  • Alicja Rapacz-Kmita
Original Paper
  • 8 Downloads

Abstract

The majority of parts used in the electrical apparatus are made of polymer materials; however, pure polymers do not provide the antibacterial functionality. Therefore, in order to add such property to them it is necessary to use antibacterial additives. The study concerned intercalation of triclosan (TCS) as biocide into montmorillonite (MMT) interlayer spaces was performed in order to increase TCS resistance to high-temperature treatment, which is necessary during polymer composite processing. The obtained MMT + TCS hybrids were tested for structural and antibacterial properties. The degree of biocide intercalation was assessed using X-ray diffractometry, by analyzing changes in MMT interlayer distance, and thermal analysis was performed to assess the effect of the intercalation process on the thermal stability of TCS. Antibacterial tests against Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) were also carried out on the obtained MMT + TCS powders in order to confirm the bactericidal properties of TCS released from the clay after the intercalation process. As a final proof of concept, the hybrid powder, namely MMT with incorporated TCS, was incorporated into polycarbonate matrix and antibacterial activity of modified polymer samples was tested. The obtained results have proven that montmorillonite–triclosan hybrid is an effective antibacterial additive with enhanced thermal stability which can be applied for protection of plastic parts used in electrical devices.

Keywords

Antibacterial applications Polymer composite Montmorillonite Intercalation Triclosan 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Yang L, Jelsbak L, Marvig RL, Damkiær S, Workman CT, Rau MH, Hansen SK, Folkesson A, Johansen HK, Ciofu O, Høiby N, Sommer MOA, Molin S (2011) Evolutionary dynamics of bacteria in a human host environment. Proc Natl Acad Sci 108(18):7481–7486.  https://doi.org/10.1073/pnas.1018249108 CrossRefGoogle Scholar
  2. 2.
    Rybak A, Gaska K, Kapusta C, Toche F, Salles V (2017) Epoxy composites with ceramic core–shell fillers for thermal management in electrical devices. Polym Adv Technol 28:1676–1682.  https://doi.org/10.1002/pat.4038 CrossRefGoogle Scholar
  3. 3.
    Gaska K, Kádár R, Rybak A, Siwek A, Gubanski S (2017) Gas barrier, thermal, mechanical and rheological properties of highly aligned graphene-LDPE nanocomposites. Polymers 9:294.  https://doi.org/10.3390/polym9070294 CrossRefGoogle Scholar
  4. 4.
    Rybak A, Gaska K (2015) Functional composites with core–shell fillers: I. Particle synthesis and thermal conductivity measurements. J Mater Sci 50:7779–7789.  https://doi.org/10.1007/s10853-015-9349-6 CrossRefGoogle Scholar
  5. 5.
    Porebska R, Rybak A, Kozub B, Sekula R (2015) Polymer matrix influence on stability of wood polymer composites. Polym Adv Technol 26:1076–1082.  https://doi.org/10.1002/pat.3535 CrossRefGoogle Scholar
  6. 6.
    Mandal P, Ghosh S (2018) Green synthesis of poly(vinyl alcohol)–silver nanoparticles hybrid using Palash (Butea monosperma) flower extract and investigation of antibacterial activity. Polym Bull 75:1949–1955.  https://doi.org/10.1007/s00289-017-2137-5 CrossRefGoogle Scholar
  7. 7.
    Xue B, Li F, Xing Y, Sun M, Liu D, Jiang Y (2011) Preparation of Cu/OMMT/LLDPE nanocomposites and synergistic effect study of two different nano materials in polymer matrix. Polym Bull 67:1463.  https://doi.org/10.1007/s00289-011-0466-3 CrossRefGoogle Scholar
  8. 8.
    Mohsen RM, Morsi SMM, Selim MM (2018) Electrical, thermal, morphological, and antibacterial studies of synthesized polyaniline/zinc oxide nanocomposites. Polym Bull.  https://doi.org/10.1007/s00289-018-2348-4 Google Scholar
  9. 9.
    Muhammad S, Siddiq M, Niazi JH, Qureshi A (2018) Role of quaternary ammonium compound immobilized metallic graphene oxide in PMMA/PEG membrane for antibacterial, antifouling and selective gas permeability properties. Polym Bull 75:5695–5712.  https://doi.org/10.1007/s00289-018-2356-4 CrossRefGoogle Scholar
  10. 10.
    Lee SB, Koepsel RR, Morley SW, Matyjaszewski K, Sun Y, Russell AJ (2004) Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules 5:877–882.  https://doi.org/10.1021/bm034352k CrossRefGoogle Scholar
  11. 11.
    Zhu L, Dai J, Chen L, Chen J, Na H, Zhu J (2017) Design and fabrication of imidazolium ion-immobilized electrospun polyurethane membranes with antibacterial activity. J Mater Sci 52:2473–2483.  https://doi.org/10.1007/s10853-016-0542-z CrossRefGoogle Scholar
  12. 12.
    Qian H, Li M, Li Z, Lou Y, Huang L, Zhang D, Xu D, Du C, Lu L, Gao J (2017) Mussel-inspired superhydrophobic surfaces with enhanced corrosion resistance and dual-action antibacterial properties. Mater Sci Eng C 80:566–577.  https://doi.org/10.1016/j.msec.2017.07.002 CrossRefGoogle Scholar
  13. 13.
    Chen T, Shi P, Zhang J, Li Y, Tian X, Lian J, Duan T, Zhu W (2018) Bioinspired enhancement of chitosan nanocomposite films via Mg-ACC crystallization, their robust, hydrophobic and biocompatible. Appl Surf Sci 459:129–137.  https://doi.org/10.1016/j.apsusc.2018.07.194 CrossRefGoogle Scholar
  14. 14.
    Armstrong G, Thornton R, Ryan MP, Laffir F, Russell RJ, Bala T, Keely C, Babu R (2012) Formulation of epoxy–polyester powder coatings containing silver-modified nanoclays and evaluation of their antimicrobial properties. Polym Bull 68:1951–1963.  https://doi.org/10.1007/s00289-011-0695-5 CrossRefGoogle Scholar
  15. 15.
    Lei J, Zhou L, Tang Y, Luo Y, Duan T, Zhu W (2017) High-strength konjac glucomannan/silver nanowires composite films with antibacterial properties. Materials 10:524.  https://doi.org/10.3390/ma10050524 CrossRefGoogle Scholar
  16. 16.
    Huang KS, Yang CH, Huang SL, Chen CY, Lu YY, Lin YS (2016) Recent advances in antimicrobial polymers: a mini-review. Int J Mol Sci 17:1578.  https://doi.org/10.3390/ijms17091578 CrossRefGoogle Scholar
  17. 17.
    Pluta M, Galeski A, Alexandre M, Paul MA, Dubois P (2002) Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: structure and some physical properties. J Appl Polym Sci 86:1497–1506.  https://doi.org/10.1002/app.11309 CrossRefGoogle Scholar
  18. 18.
    Rapacz-Kmita A, Stodolak-Zych E, Szaraniec B, Gajek M, Dudek P (2015) Effect of clay mineral on the accelerated hydrolytic degradation of polylactide in the polymer/clay nanocomposites. Mater Lett 146:73–76.  https://doi.org/10.1016/j.matlet.2015.01.135 CrossRefGoogle Scholar
  19. 19.
    Chow WS, Lok SK (2009) Thermal properties of poly (lactic acid)/organo-montmorillonite nanocomposites. J Therm Anal Calorim 95:627–632.  https://doi.org/10.1007/s10973-007-8975-x CrossRefGoogle Scholar
  20. 20.
    Gao F (2004) Clay/polymer composites: the story. Mater Today 7:50–55.  https://doi.org/10.1016/S1369-7021(04)00509-7 CrossRefGoogle Scholar
  21. 21.
    Chen T, Li J, Shi P, Li Y, Lei J, Zhou J, Hu Z, Duan T, Tang Y, Zhu W (2017) Effects of montmorillonite on the mineralization and cementing properties of microbiologically induced calcium carbonate. Adv Mater Sci Eng 2017:1–13.  https://doi.org/10.1155/2017/7874251 Google Scholar
  22. 22.
    Zhu W, Li J, Lei J, Li Y, Chen T, Duan T, Yao W, Zhou J, Yu Y, Liu Y (2018) Silver nanoparticles incorporated konjac glucomannan-montmorillonite nacre-like composite films for antibacterial applications. Carbohyd Polym 197:253–259.  https://doi.org/10.1016/j.carbpol.2018.06.005 CrossRefGoogle Scholar
  23. 23.
    Rapacz-Kmita A, Stodolak-Zych E, Dudek M, Gajek M, Ziąbka M (2017) Magnesium aluminium silicate–gentamicin complex for drug delivery systems. Preparation, physicochemical characterisation and release profiles of the drug. J Therm Anal Calorim 127:871–880.  https://doi.org/10.1007/s10973-016-5918-4 CrossRefGoogle Scholar
  24. 24.
    Rapacz-Kmita A, Pierchała MK, Tomas-Trybuś A, Szaraniec B, Karwot J (2017) The wettability, mechanical and antimicrobial properties of polylactide/montmorillonite nanocomposite films. Acta Bioeng Biomech 19:25–33.  https://doi.org/10.5277//abb-00820-2017-02 Google Scholar
  25. 25.
    Lopez-Galindo A, Viseras C, Cerezo P (2007) Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Appl Clay Sci 36:51–63.  https://doi.org/10.1016/j.clay.2006.06.016 CrossRefGoogle Scholar
  26. 26.
    Jones RD, Jampani HB, Newman JL, Lee AS (2000) Triclosan: a review of effectiveness and safety in health care settings. Am J Infect Control 28:184–196.  https://doi.org/10.1067/mic.2000.102378 CrossRefGoogle Scholar
  27. 27.
    del Valle LJ, Díaz A, Royo M, Rodríguez-Galán A, Puiggalí J (2012) Biodegradable polyesters reinforced with triclosan loaded polylactide micro/nanofibers: properties, release and biocompatibility. eXPRESS Polym Lett 6:266–282.  https://doi.org/10.3144/expresspolymlett.2012.30 CrossRefGoogle Scholar
  28. 28.
    ASTM E2149-01—Standard Test Method for determining the antimicrobial activity of immobilized antimicrobial agents under dynamic contact conditionsGoogle Scholar
  29. 29.
    ISO 22196:2011(E)—Measurement of antibacterial activity on plastics and other nonporous surfacesGoogle Scholar
  30. 30.
    Raussell-Colom JA, Serratosa JM (1987) Reactions of clays with organic substances. In: Newman ACD (ed) Chemistry of clays and clay minerals, vol 6. Mineralogical society monograph. Longman Scientific and Technical, Essex, pp 371–422Google Scholar
  31. 31.
    Parolo ME, Savini MC, Vallés JM, Baschini MT, Avena MJ (2008) Tetracycline adsorption on montmorillonite: pH and ionic strength effects. Appl Clay Sci 40:179–186.  https://doi.org/10.1016/j.clay.2007.08.003 CrossRefGoogle Scholar
  32. 32.
    Tomic ZP, Kaluderovic L, Nikolic N, Markovic S, Makreski P (2016) Thermal investigation of acetochlor adsorption on inorganic- and organic-modified montmorillonite. J Therm Anal Calorim 123:2313–2319.  https://doi.org/10.1007/s10973-015-5102-2 CrossRefGoogle Scholar
  33. 33.
    Patel HA, Somani RS, Bajaj HC, Jasra RV (2007) Synthesis and characterization of organic bentonite using Gujarat and Rajasthan clays. Curr Sci 92:1004–1009Google Scholar
  34. 34.
    Ni R, Huang Y, Yao C (2009) Thermogravimetric analysis of organoclays intercalated with the gemini surfactants. J Therm Anal Calorim 96:943–947.  https://doi.org/10.1007/s10973-009-0046-z CrossRefGoogle Scholar
  35. 35.
    Soares VLP, Nascimento RSV, Menezes VJ, Batista L (2004) TG characterization of organically modified montmorillonite. J Therm Anal Calorim 75:671–676.  https://doi.org/10.1023/B:JTAN.0000027161.10803.60 CrossRefGoogle Scholar
  36. 36.
    Rapacz-Kmita A, Stodolak-Zych E, Ziąbka M, Różycka A, Dudek M (2015) Instrumental characterization of the smectite clay-gentamicin hybrids. Bull Mater Sci 38:1069–1078.  https://doi.org/10.1007/s12034-015-0943-7 CrossRefGoogle Scholar
  37. 37.
    Rapacz-Kmita A, Bućko MM, Stodolak-Zych E, Mikołajczyk M, Dudek P, Trybus M (2017) Characterisation, in vitro release study, and antibacterial activity of montmorillonite-gentamicin complex material. Mater Sci Eng C 70:471–478.  https://doi.org/10.1016/j.msec.2016.09.031 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.ABB Corporate Research CenterKrakówPoland
  2. 2.Faculty of Materials Science and CeramicsAGH University of Science and TechnologyKrakówPoland

Personalised recommendations