Explanation of main tunneling mechanism in electrical conductivity of polymer/carbon nanotubes nanocomposites by interphase percolation

  • Lishu Wang
  • Wanxi PengEmail author
  • Mohsen SarafbidabadEmail author
  • Yasser Zare
Original Paper


In this paper, the tunneling effect as the main mechanism for charge transferring in polymer/carbon nanotubes (CNT) nanocomposites (PCNT) is correlated with interphase percolation. Soft-core and hard-core models express the percolation threshold based on a previous report. Furthermore, the tunneling effect is related to the interphase layer around the nanoparticles and the excluded volume and percolation threshold are defined for this case. The calculations of all models are compared to the experimentally measured percolation threshold in some samples. The predictions of soft-core and hard-core approaches deviate from the low percolation threshold in PCNT. It is found that the model assuming the interphase as tunneling distance can properly describe the low level of percolation threshold in PCNT. Based on this model, the effects of main parameters on the percolation threshold and the electrical conductivity of PCNT are described. The predictions demonstrate that the thin and long CNT together with the thick interphase show positive impacts on the percolation threshold and conductivity.


Polymer/CNT nanocomposites Tunneling mechanism Interphase Percolation threshold Hard-core model 



  1. 1.
    Li J, Song Z, Gao L, Shan H (2016) Preparation of carbon nanotubes/polylactic acid nanocomposites using a non-covalent method. Polym Bull 73(8):8–2121CrossRefGoogle Scholar
  2. 2.
    Zhang Y (2015) Carbon nanotubes/polyacrylic acid coating materials prepared by in situ polymerization technique. Polym Bull 72(10):26–2519CrossRefGoogle Scholar
  3. 3.
    Pincheira G, Montalba C, Gacitua W, Montrieux H-M, Lecomte-Beckers J, Meléndrez M et al (2016) Study of the effect of amino-functionalized multiwall carbon nanotubes on dry sliding wear resistance properties of carbon fiber reinforced thermoset polymers. Polym Bull 73(8):301–2287CrossRefGoogle Scholar
  4. 4.
    Eksin E, Bolat G, Kuralay F, Erdem A, Abaci S (2015) Preparation of gold nanoparticles/single-walled carbon nanotubes/polyaniline composite-coated electrode developed for DNA detection. Polym Bull 72(12):46–3135CrossRefGoogle Scholar
  5. 5.
    Ansari R, Rouhi S, Ajori S (2018) Molecular dynamics simulations of the polymer/amine functionalized single-walled carbon nanotubes interactions. Appl Surf Sci 455:80–171CrossRefGoogle Scholar
  6. 6.
    Jagtap SB, Patil VD, Suresh K, Ram F, Mohan MS, Rajput SS et al (2018) Functionalized carbon nanotube reinforced polymer nanocomposite microcapsules with enhanced stiffness. Colloids Surf A Physicochem Eng Asp 550:9–82CrossRefGoogle Scholar
  7. 7.
    Wu T, Chen B (2017) Autonomous self-healing multiwalled carbon nanotube nanocomposites with piezoresistive effect. RSC Adv 7(33):9–20422Google Scholar
  8. 8.
    Saboori B, Ayatollahi MR (2017) Experimental fracture study of MWCNT/epoxy nanocomposites under the combined out-of-plane shear and tensile loading. Polym Test 59:193–202CrossRefGoogle Scholar
  9. 9.
    Baferani AH, Katbab A, Ohadi A (2017) The role of sonication time upon acoustic wave absorption efficiency, microstructure, and viscoelastic behavior of flexible polyurethane/CNT nanocomposite foam. Eur Polym J 90:91–383Google Scholar
  10. 10.
    Mallakpour S, Behranvand V (2017) Application of recycled PET/carboxylated multi-walled carbon nanotube composites for Cd 2 + adsorption from aqueous solution: a study of morphology, thermal stability, and electrical conductivity. Colloid Polym Sci 295(3):62–453CrossRefGoogle Scholar
  11. 11.
    Nikfar N, Zare Y, Rhee KY (2018) Dependence of mechanical performances of polymer/carbon nanotubes nanocomposites on percolation threshold. Phys B Condens Matter 533:69–75CrossRefGoogle Scholar
  12. 12.
    Kim S, Jamalzadeh N, Zare Y, Hui D, Rhee KY (2018) Considering the filler network as a third phase in polymer/CNT nanocomposites to predict the tensile modulus using Hashin-Hansen model. Phys B Condens Matter 541:69–74CrossRefGoogle Scholar
  13. 13.
    Ramesh S, Khandelwal S, Rhee KY, Hui D (2017) Synergistic effect of reduced graphene oxide, CNT and metal oxides on cellulose matrix for supercapacitor applications. Compos Part B Eng 138:45–54CrossRefGoogle Scholar
  14. 14.
    Benyakhou S, Belmokhtar A, Zehhaf A, Benyoucef A (2017) Development of novel hybrid materials based on poly (2-aminophenyl disulfide)/silica gel: preparation, characterization and electrochemical studies. J Mol Struct 1150:5–580CrossRefGoogle Scholar
  15. 15.
    Benykhlef S, Bekhoukh A, Berenguer R, Benyoucef A, Morallon E (2016) PANI-derived polymer/Al2O3 nanocomposites: synthesis, characterization, and electrochemical studies. Colloid Polym Sci 294(12):85–1877CrossRefGoogle Scholar
  16. 16.
    Chouli F, Radja I, Morallon E, Benyoucef A (2017) A novel conducting nanocomposite obtained by p-anisidine and aniline with titanium (IV) oxide nanoparticles: synthesis, characterization, and electrochemical properties. Polym Compos 38:E60–E254CrossRefGoogle Scholar
  17. 17.
    Radja I, Djelad H, Morallon E, Benyoucef A (2015) Characterization and electrochemical properties of conducting nanocomposites synthesized from p-anisidine and aniline with titanium carbide by chemical oxidative method. Synth Met 202:25–32CrossRefGoogle Scholar
  18. 18.
    Zare Y, Rhee KY (2017) Development of a conventional model to predict the electrical conductivity of polymer/carbon nanotubes nanocomposites by interphase, waviness and contact effects. Compos Part A Appl Sci Manuf 100:305–312CrossRefGoogle Scholar
  19. 19.
    Zare Y, Rhee KY (2017) A simple methodology to predict the tunneling conductivity of polymer/CNT nanocomposites by the roles of tunneling distance, interphase and CNT waviness. RSC Adv 7(55):21–34912CrossRefGoogle Scholar
  20. 20.
    Kara S, Arda E, Dolastir F, Pekcan Ö (2010) Electrical and optical percolations of polystyrene latex–multiwalled carbon nanotube composites. J Colloid Interface Sci 344(2):395–401CrossRefGoogle Scholar
  21. 21.
    Zare Y (2017) An approach to study the roles of percolation threshold and interphase in tensile modulus of polymer/clay nanocomposites. J Colloid Interface Sci 486:54–249CrossRefGoogle Scholar
  22. 22.
    Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37(24):55–9048CrossRefGoogle Scholar
  23. 23.
    Berhan L, Sastry A (2007) Modeling percolation in high-aspect-ratio fiber systems. I. Soft-core versus hard-core models. Phys Rev E 75(4):041120CrossRefGoogle Scholar
  24. 24.
    Zare Y, Rhee KY (2017) Development of a model for electrical conductivity of polymer graphene nanocomposites assuming interphase and tunneling regions in conductive networks. Ind Eng Chem Res 56:9107–9115CrossRefGoogle Scholar
  25. 25.
    Zare Y, Rhee KY (2017) Development of Hashin-Shtrikman model to determine the roles and properties of interphases in clay/CaCO3/PP ternary nanocomposite. Appl Clay Sci 137:82–176CrossRefGoogle Scholar
  26. 26.
    Zare Y, Rhee KY (2017) Dependence of Z parameter for tensile strength of multi-layered interphase in polymer nanocomposites to material and interphase properties. Nanoscale Res Lett 12(1):42CrossRefGoogle Scholar
  27. 27.
    Zare Y, Rhee KY (2017) Development and modification of conventional Ouali model for tensile modulus of polymer/carbon nanotubes nanocomposites assuming the roles of dispersed and networked nanoparticles and surrounding interphases. J Colloid Interface Sci 506:90–283Google Scholar
  28. 28.
    Zare Y, Rhee KY, Park S-J (2017) Predictions of micromechanics models for interfacial/interphase parameters in polymer/metal nanocomposites. Int J Adhes Adhes 79:6–111CrossRefGoogle Scholar
  29. 29.
    Razavi R, Zare Y, Rhee KY (2018) A model for tensile strength of polymer/carbon nanotubes nanocomposites assuming the percolation of interphase regions. Colloids Surf A 538:54–148CrossRefGoogle Scholar
  30. 30.
    H-x Li, Zare Y, Rhee KY (2018) The percolation threshold for tensile strength of polymer/CNT nanocomposites assuming filler network and interphase regions. Mater Chem Phys 207:76–83CrossRefGoogle Scholar
  31. 31.
    Qiao R, Brinson LC (2009) Simulation of interphase percolation and gradients in polymer nanocomposites. Compos Sci Technol 69(3):9–491Google Scholar
  32. 32.
    Lu P, Leong Y, Pallathadka P, He C (2013) Effective moduli of nanoparticle reinforced composites considering interphase effect by extended double-inclusion model–theory and explicit expressions. Int J Eng Sci 73:33–55CrossRefGoogle Scholar
  33. 33.
    Baxter SC, Robinson CT (2011) Pseudo-percolation: critical volume fractions and mechanical percolation in polymer nanocomposites. Compos Sci Technol 71(10):9–1273CrossRefGoogle Scholar
  34. 34.
    Kim YJ, Shin TS, Do Choi H, Kwon JH, Chung Y-C, Yoon HG (2005) Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon 43(1):23–30CrossRefGoogle Scholar
  35. 35.
    Maiti S, Shrivastava NK, Khatua B (2013) Reduction of percolation threshold through double percolation in melt- blended polycarbonate/acrylonitrile butadiene styrene/multiwall carbon nanotubes elastomer nanocomposites. Polym Compos 34(4):9–570CrossRefGoogle Scholar
  36. 36.
    Lisunova M, Mamunya YP, Lebovka N, Melezhyk A (2007) Percolation behaviour of ultrahigh molecular weight polyethylene/multi-walled carbon nanotubes composites. Eur Polym J 43(3):58–949CrossRefGoogle Scholar
  37. 37.
    McClory C, McNally T, Baxendale M, Pötschke P, Blau W, Ruether M (2010) Electrical and rheological percolation of PMMA/MWCNT nanocomposites as a function of CNT geometry and functionality. Eur Polym J 46(5):68–854CrossRefGoogle Scholar
  38. 38.
    Balberg I (2002) A comprehensive picture of the electrical phenomena in carbon black–polymer composites. Carbon 40(2):43–139CrossRefGoogle Scholar
  39. 39.
    Shekhar S, Sajitha E, Prasad V, Subramanyam S (2008) High coercivity below percolation threshold in polymer nanocomposite. J Appl Phys 104(8):083910CrossRefGoogle Scholar
  40. 40.
    Chao H, Riggleman RA (2013) Effect of particle size and grafting density on the mechanical properties of polymer nanocomposites. Polymer 54(19):9–5222CrossRefGoogle Scholar
  41. 41.
    Fu S-Y, Feng X-Q, Lauke B, Mai Y-W (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos Part B Eng 39(6):61–933CrossRefGoogle Scholar
  42. 42.
    Arenhart R, Barra G, Fernandes C (2016) Simulation of percolation threshold and electrical conductivity in composites filled with conductive particles: effect of polydisperse particle size distribution. Polym Compos 37(1):9–61CrossRefGoogle Scholar
  43. 43.
    Shin H, Yang S, Choi J, Chang S, Cho M (2015) Effect of interphase percolation on mechanical behavior of nanoparticle-reinforced polymer nanocomposite with filler agglomeration: a multiscale approach. Chem Phys Lett 635:5–80CrossRefGoogle Scholar
  44. 44.
    Zare Y, Rhee KY (2018) A simple model for electrical conductivity of polymer carbon nanotubes nanocomposites assuming the filler properties, interphase dimension, network level, interfacial tension and tunneling distance. Compos Sci Technol 155:60–252CrossRefGoogle Scholar
  45. 45.
    Chatterjee AP (2006) A model for the elastic moduli of three-dimensional fiber networks and nanocomposites. J Appl Phys 100(5):054302CrossRefGoogle Scholar
  46. 46.
    Razavi R, Zare Y, Rhee KY (2017) A two-step model for the tunneling conductivity of polymer carbon nanotube nanocomposites assuming the conduction of interphase regions. RSC Adv 7(79):33–50225CrossRefGoogle Scholar
  47. 47.
    Yeganeh JK (2018) Dynamics of nucleation and growth mechanism in the presence of nanoparticles or block copolymers: polystyrene/poly (vinyl methyl ether). Polym Bull 75(1):1–15CrossRefGoogle Scholar
  48. 48.
    Abdolmaleki A, Mallakpour S, Borandeh S (2013) Amino acid-functionalized multi-walled carbon nanotubes for improving compatibility with chiral poly (amide-ester-imide) containing l-phenylalanine and l-tyrosine linkages. Appl Surf Sci 287:23–117CrossRefGoogle Scholar
  49. 49.
    Orgilés-Calpena E, Arán-Aís F, Torró-Palau AM, Orgilés-Barceló C (2013) Chemical functionalization and dispersion of carbon nanofibers in waterborne polyurethane adhesives. J Adhes 89(3):91–174CrossRefGoogle Scholar
  50. 50.
    Park S, Bandaru P (2010) Improved mechanical properties of carbon nanotube/polymer composites through the use of carboxyl-epoxide functional group linkages. Polymer 51(22):7–5071CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Architecture and Urban PlanningHunan University of TechnologyZhuzhouChina
  2. 2.Furniture and Art Design InstituteCentral South University of Forestry and TechnologyChangshaChina
  3. 3.Huanghe Jiaotong UniversityZhengzhouChina
  4. 4.Department of Biomedical Engineering, Faculty of EngineeringUniversity of IsfahanIsfahanIran
  5. 5.Young Researchers and Elites Club, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations