ROMP-based biorenewable polymers of norbornene modified with triglycerides or esters from natural buriti oil

  • Marcella S. Ferreira
  • Henrique Fernandes
  • José L. Silva Sá
  • Valdemiro P. CarvalhoJr.Email author
  • Benedito S. Lima-NetoEmail author
Original Paper


Two novel monomers, norbornenyl buriti olein (NBO) and norbornenyl buriti ester (NB-FAME), were synthesized by reactions of 5-norbornene-2-carboxylic acid with triglycerides and with methyl esters from buriti oil, respectively. No polymers were produced via ROMP of NBO or NB-FAME using Grubbs second-generation catalyst at 30 °C for 1 h. However, copolymers of NBO or NB-FAME in the presence of norbornene (NBE) were obtained raising the initial compositions of the buriti oil-derived monomers from 20 to 80%, under the same conditions. The polymers were insoluble in water and typical organic solvents. In chloroform at 30 °C for 48 h, the polymers from synthesis with 80 wt% of buriti oil-derived monomers resulted in a mass gain of 1709% for polymer from NBO and 929 wt% for polymer from NB-FAME. SEM micrographs showed smooth morphologies and non-porous surfaces, which differ from the porous polyNBE. TGA analyses indicated thermal stability up to 200 °C. The poly(NBO-co-NBE) and poly(NB-FAME-co-NBE) have been proved to be the final products.


Vegetable oil polymers Buriti oil Norbornene ROMP 



B. S. Lima-Neto is indebted to FAPESP, Proc. 2017/06329-5, for financial support.

Supplementary material

289_2018_2664_MOESM1_ESM.docx (13.8 mb)
Supplementary material 1 (DOCX 14163 kb)


  1. 1.
    Verhé RG (2004) Industrial products from lipids and proteins in renewable bioresources: scope and modification for non-food applications. Wiley, ChichesterGoogle Scholar
  2. 2.
    Malacea R, Dixneuf PH (2010) Alkene metathesis and renewable materials: selective transformations of plant oils. Springer, DordrechtGoogle Scholar
  3. 3.
    Karak N (2012) Vegetable oil-based polymers: properties, processing and applications. Woodhead Publishing, CambridgeCrossRefGoogle Scholar
  4. 4.
    Miao S, Wang P, Su Z, Zhang S (2014) Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomater 10:1692–1704CrossRefGoogle Scholar
  5. 5.
    Mosiewicki MA, Aranguren MI (2016) Recent developments in plant oil based functional materials. Polym Int 65:28–38CrossRefGoogle Scholar
  6. 6.
    Zhang C, Garrison TF, Madbouly SA, Kessler MR (2017) Recent advances in vegetable oil-based polymers and their composites. Prog Polym Sci 71:91–143CrossRefGoogle Scholar
  7. 7.
    Espinosa LM, Meier MAR (2011) Plant oils: the perfect renewable resource for polymer science?! Eur Polym J 47:837–852CrossRefGoogle Scholar
  8. 8.
    Wang B, Mireles K, Rock M, Li Y, Thakur VK, Gao D, Kessler MR (2016) Synthesis and preparation of bio-based ROMP thermosets from functionalized renewable isosorbide derivative. Macromol Chem Phys 227:871–879CrossRefGoogle Scholar
  9. 9.
    Sutthasupa S, Terada K, Sanda F, Masuda T (2007) Ring-opening metathesis polymerization of amino acid-functionalized norbornene diester monomers. Polymer 48:3026–3032CrossRefGoogle Scholar
  10. 10.
    Fonseca LR, Sá JLS, Lima-Neto BS (2016) Plant oil-based polyester in bio-based plant oil polymers and composites. Elsevier, LondonGoogle Scholar
  11. 11.
    Meier MAR, Metzger JO, Schubert US (2007) Plant oil renewable resources as green alternatives in polymer science. Chem Soc Rev 36:1788–1802CrossRefGoogle Scholar
  12. 12.
    Belgacem MN, Gandini A (2008) Materials from vegetable oils: major sources, properties and applications, monomers, polymers and composites from renewable resources. Elsevier, AmsterdamGoogle Scholar
  13. 13.
    Chen J, Soucek MD, Simonsick WJ, Celikay RW (2002) Synthesis and photopolymerization of norbornyl epoxidized linseed oil. Polymer 43:5379–5389CrossRefGoogle Scholar
  14. 14.
    Xia Y, Lu Y, Larock RC (2010) Ring-opening metathesis polymerization (ROMP) of norbornenyl-functionalized fatty alcohols. Polymer 51:53–61CrossRefGoogle Scholar
  15. 15.
    Xia Y, Larock RC (2010) Castor oil-based thermosets with varied crosslink densities prepared by ring-opening metathesis polymerization (ROMP). Polymer 51:2508–2514CrossRefGoogle Scholar
  16. 16.
    Haman K, Badrinarayanan P, Kessler MR (2009) Cure characterization of the ring-opening metathesis polymerization of linseed oil-based thermosetting resins. Polym Int 58:738–744CrossRefGoogle Scholar
  17. 17.
    Lehnen DR, Guzatto R, Defferrari D, Albornoz LL, Samios D (2014) Solvent-free biodiesel epoxidation. Environ Chem Lett 12:335–340CrossRefGoogle Scholar
  18. 18.
    Fernandes H, Souza-Filho RM, Sá JLS, Lima-Neto BS (2016) Bio-based plant oil polymers from ROMP of norbornene modified with triglyceride from crude red palm olein. RSC Adv 6:75104–75110CrossRefGoogle Scholar
  19. 19.
    Billmeyer FW Jr (1984) Textbook of polymer science. Wiley-Interscience, New York-LondonGoogle Scholar
  20. 20.
    Lucas EF, Soares BG, Monteiro EEC (2001) Caracterização de polímeros: determinação de peso molecular e análise térmica. E-Papers Editoriais, Rio de JaneiroGoogle Scholar
  21. 21.
    Aquino JS, Pessoa DCNP, Araújo KLGV, Epaminondas PS, Schuler ARP, Souza AG, Stamford TLM (2012) Refining of buriti oil (Mauritia flexuosa) originated from the brazilian cerrado: physicochemical, thermal-oxidative and nutritional implications. J Braz Chem Soc 23:212–219Google Scholar
  22. 22.
    Albuquerque MLS, Guedes I, Alcantara P Jr, Moreira SGC, Barbosa-Neto NM, Correa DS, Zilio SC (2005) Characterization of Buriti (Mauritia flexuosa L.) oil by absorption and emission spectroscopies. J Braz Chem Soc 16:1113–1117CrossRefGoogle Scholar
  23. 23.
    Silva SM, Sampaio KA, Taham T, Rocco SA, Ceriani R, Meirelles AJA (2009) Characterization of oil extracted from buriti fruit (Mauritia flexuosa) grown in the Brazilian Amazon Region. J Am Oil Chem Soc 86:611–616CrossRefGoogle Scholar
  24. 24.
    Barison A, da Silva CWP, Campos FR, Simonelli F, Lenz CA, Ferreira AG (2010) A simple methodology for the determination of fatty acid composition in edible oils through 1H NMR spectroscopy. Magn Reson Chem 48:642–650PubMedGoogle Scholar
  25. 25.
    Wilson GO, Caruso MM, Reimer NT, White SR, Sottos NR, Moore JS (2008) Evaluation of ruthenium catalysts for ring-opening metathesis polymerization-based self-healing applications. Chem Mater 20:3288–3297CrossRefGoogle Scholar
  26. 26.
    Calderon N (2006) Ring-opening polymerization of cycloolefins. J Macromol Sci Part C 7:105–159CrossRefGoogle Scholar
  27. 27.
    Carvalho VP Jr, Ferraz CP, Lima-Neto BS (2012) Tailored norbornene-based copolymer with systematic variation of norbornadiene as a crosslinker obtained via ROMP with alternative amine Ru catalysts. Eur Polym J 48:341–349CrossRefGoogle Scholar
  28. 28.
    Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, IthacaGoogle Scholar
  29. 29.
    Canevarolo-Jr SV (2002) Ciência dos polímeros: um texto básico para tecnólogos e engenheiros. ArtLiber, São PauloGoogle Scholar
  30. 30.
    Santos EM, Aguiar M, Oliveira MAFC, Zawadzki SF, Akcelrud L (2000) Determinação do parâmetro de solubilidade de poliuretanos de PBLH. Ciência e Tecnolo, PolímerosCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Marcella S. Ferreira
    • 1
  • Henrique Fernandes
    • 1
  • José L. Silva Sá
    • 2
  • Valdemiro P. CarvalhoJr.
    • 3
    Email author
  • Benedito S. Lima-Neto
    • 1
    Email author
  1. 1.Instituto de Química de São CarlosUniversidade de São PauloSão CarlosBrazil
  2. 2.Centro de Ciências da NaturezaUniversidade Estadual do PiauíTeresinaBrazil
  3. 3.Faculdade de Ciências e TecnologiaUniv. Estadual PaulistaPresidente PrudenteBrazil

Personalised recommendations