Advertisement

Transport and complex modulus study of La0.7Ca0.3MnO3 perovskite manganite nano-compound with polypyrrole as host

  • M. G. SmithaEmail author
  • M. V. Murugendrappa
Original Paper
  • 22 Downloads

Abstract

The paper focuses on the facile synthesis of polypyrrole/La0.7Ca0.3MnO3 perovskite magnetic nano-composites synthesized by in situ chemical oxidation method using ammonium persulfate as oxidant. The morphology and crystal phase of the prepared samples were analyzed using SEM, TEM and XRD, respectively. Electrical conductivity, dielectric constant, dielectric loss, complex electric and impedance modulus studies were invested in the frequency range of 100 Hz–5 MHz at room temperature using AC impedance analyzer. The composites show frequency dependence with relaxation mechanism. The electric and impedance modulus analysis reveals the presence of non-Debye-type relaxation process and the effect of both grain and grain boundary on the transport properties of the composites.

Keywords

Electrical conductivity Perovskite Dielectric constant Non-Debye relaxation 

Notes

Acknowledgements

The author is thankful to The Principal, BMS College of Engineering, Bangalore, for the cooperation and providing the necessary facility. The author is indebted to The Principal, RNS Institute of Technology, Bangalore, for his cooperation. The author also thanks World Bank-funded project Centre of Excellence on Advanced Materials Research under TEQIP 1.2.1.

References

  1. 1.
    Brandle CD, Fratello VJ (1990) Preparation of perovskite oxides for high T c superconductor substrates. J Mater Res 5(10):2160CrossRefGoogle Scholar
  2. 2.
    Philips JM (1996) Substrate selection for high-temperature superconducting thin films. J Appl Phys 79(4):1829CrossRefGoogle Scholar
  3. 3.
    Koshy J, Kurian J, Jose R, John AM, Sajith PK, James J, Pai SP, Pinto R (1999) Characterization and dielectric property analysis of A-site doped LaTiO3-δ perovskite synthesized by ball milling method. Bull Mater Sci 22:243CrossRefGoogle Scholar
  4. 4.
    Cwik M, Lorenz T, Baier J, Muller R, Andre G, Bour F, Lichtenberg F, Freimuth A, Schmitz R, Hartmann EM, Braden M (2003) Crystal and magnetic structure of LaTiO3: evidence for nondegenerate t2g orbitals. Phys Rev B 68:060401(R)CrossRefGoogle Scholar
  5. 5.
    Duan P, Chen Z, Dai S, Liu L, Gao J (2006) Electrical transport and magnetic properties of perovskite-type electron-doped La-Pr-Mn-O epitaxial films. J Magn Magn Mater 1:521–526CrossRefGoogle Scholar
  6. 6.
    Sacchidanand SS, Jayant AK, Milind VK (2014) Synthesis, characterization and electrical property of silver doped polypyrrole nanocomposites. J Innov Res Sci Eng Technol 3, ISSN: 2319-8753Google Scholar
  7. 7.
    Goodenough JB (1955) Theory of the role of covalence in the perovskite-type manganites [La, M(II)] MnO3. Phys Rev 100:564–573CrossRefGoogle Scholar
  8. 8.
    Singh SK, Palmer SB, Mck Paul D, Lees MR (1996) Growth, transport, and magnetic properties of Pr0.67Ca0.33MnO 3 thin films. Appl Phys Lett 69(2):263–265CrossRefGoogle Scholar
  9. 9.
    Cao Y-L, Ding X-L, Li H-C, Yi Z-G, Wang X-F, Zhu J-J, Kan C-X (2011) Morphology-controllable noble metal nanoparticles: synthesis, optical property and growth mechanism. Acta Phys Chim Sin 27(6):1273–1286Google Scholar
  10. 10.
    Levy P, Parisi F, Polla G, Vega D, Leyva G, Lanza H, Freitas RS, Ghivelder L (2000) Controlled phase separation in La0.5Ca0.5MnO 3. Phys Rev B 62:6437CrossRefGoogle Scholar
  11. 11.
    Kazim S, Ahmad S, Pfleger J, Plestil J, Joshi YM (2012) Polyaniline–sodium montmorillonite clay nanocomposites: effect of clay concentration on thermal, structural, and electrical properties. J Mater Sci 47(27):420–428CrossRefGoogle Scholar
  12. 12.
    Wolf EL (2004) Nanophysics and nanotechnology. Wiley, WeinheimGoogle Scholar
  13. 13.
    Chaluvaraju BV, Ganiger SK, Murugendrappa MV (2016) Study of dielectric properties of polypyrrole/titanium dioxide and polypyrrole/titanium dioxide–MWCNT nano composites. J Mater Sci 27(1):1044–1055Google Scholar
  14. 14.
    Harreld J, Wong HP, Dave BC, Dunn B, Nazar LF (1998) Synthesis and properties of polypyrrole–vanadium oxide hybrid aerogels. J Non-Cryst Solids 225:319–324CrossRefGoogle Scholar
  15. 15.
    Cherif W, Ellouze M, Elhalouani F, Lehlooh AF (2012) Synthesis and characterization of fine particles of La0.7Ca0.3MnO 3 prepared by the mechanical ball milling method. Eur Phys J Plus 73:127Google Scholar
  16. 16.
    Taguchi H, Matsuda D, Nagano M, Tanihata K, Miyamoto Y (1992) Synthesis of Perovskite‐type (La1−xSrx) MnO3 (OX 0.3) at low temperature. J Am Ceram Soc 75:201CrossRefGoogle Scholar
  17. 17.
    Murugendrappa MV, Ambika Prasad MVN (2007) Chemical synthesis, characterization, and direct-current conductivity studies of polypyrrole/γ-Fe2O3 composites. J Appl Polym Sci 103:2797–2801CrossRefGoogle Scholar
  18. 18.
    Reddy Channu VS, Holze R (2012) Synthesis and characterization of a polyaniline-modified SnO2 nanocomposite. Ionics 18:495–500CrossRefGoogle Scholar
  19. 19.
    Efremov V, van den Brink J, Khomskii DI (2004) Bond-versus site-centred ordering and possible ferroelectricity in manganites. Nat Mater 3(12):853CrossRefGoogle Scholar
  20. 20.
    Vishnuvardhan TK, Kulkarni VR, Basavaraja C, Raghavendra SC (2006) Synthesis, characterization and ac conductivity of polypyrrole/Y2O3 composites. Bull Mater Sci 29(1):77–83CrossRefGoogle Scholar
  21. 21.
    Das PS, Chakraborty PK, Behera B, Choudhary RNP (2007) Electrical properties of Li2BiV5O15 ceramics. Phys B 395:98–103CrossRefGoogle Scholar
  22. 22.
    Dutta A, Sinha TP (2006) Dielectric relaxation in perovskite BaAl1/2Nb1/2O3. J Phys Chem Solids 67(7):1484CrossRefGoogle Scholar
  23. 23.
    Costa M, Pires GFM Jr, Terezo AJ, Grac MPF, Sombra (2011) Impedance and modulus studies of magnetic ceramic oxide Ba2Co2Fe12O22 (Co2Y) doped with Bi2O3. J Appl Phys 110:034107CrossRefGoogle Scholar
  24. 24.
    Sen S, Pramanik P, Choudhary RNP (2007) Effect of Ca-additions on structural and electrical properties of Pb (SnTi)O3 nano-ceramics. Ceram Int 33(4):579–587CrossRefGoogle Scholar
  25. 25.
    Behera B, Nayak P, Choudhary RNP (2007) Study of complex impedance spectroscopic properties of LiBa2Nb5O15 ceramics. Mater Chem Phys 106:193CrossRefGoogle Scholar
  26. 26.
    Sen S, Choudhary RNP, Pramanik P (2007) Structural and electrical properties of Ca2+-modified PZT electroceramics. Phys B Condens Matter 387(1):56–62CrossRefGoogle Scholar
  27. 27.
    Kumar A, Singh BP, Choudhary RNP, Thakur AK (2006) Characterization of electrical properties of Pb-modified BaSnO3 using impedance spectroscopy. Mater Chem Phys 99:150–159CrossRefGoogle Scholar
  28. 28.
    Priyanka, Jha AK (2013) Electrical characterization of zirconium substituted barium titanate using complex impedance spectroscopy. Bull Mater Sci 36(1):135–141CrossRefGoogle Scholar
  29. 29.
    Tan FK, Hassan J, Wahab ZA, Azis RS (2016) Electrical conductivity and dielectric behaviour of manganese and vanadium mixed oxide prepared by conventional solid state method. Eng Sci Technol Int J 19(4):2081–2087CrossRefGoogle Scholar
  30. 30.
    Płcharski J, Wieczorek W (1988) PEO based composite solid electrolyte containing nasicon. Solid State Ionics 28–30:979–982CrossRefGoogle Scholar
  31. 31.
    Ganguly P, Jha AK, Deori KL (2008) Complex impedance studies of tungsten–bronze structured Ba5SmTi3Nb7O30 ferroelectric ceramics. Solid State Commun 146:472–477CrossRefGoogle Scholar
  32. 32.
    Jonscher AK (1977) The ‘universal’dielectric response. Nature 267:673–679CrossRefGoogle Scholar
  33. 33.
    Tiwari B, Choudhary RNP (2008) Complex impedance spectroscopic analysis of Mn-modified Pb (Zr0.65Ti0. 35) O3 electroceramics. J Phys Chem Solids 69:2852–2857CrossRefGoogle Scholar
  34. 34.
    Macdonald JR (1987) Impedance spectroscopy: emphasizing solid materials and system. Wiley, New YorkGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsRNS Institute of TechnologyBangaloreIndia
  2. 2.Department of PhysicsBMS College of EngineeringBangaloreIndia
  3. 3.Center of Excellence in Advanced Materials ResearchBMS College of EngineeringBangaloreIndia

Personalised recommendations