Advertisement

Synthesis characterization rheological and morphological study of a new epoxy resin pentaglycidyl ether pentaphenoxy of phosphorus and their composite (PGEPPP/MDA/PN)

  • Rachid Hsissou
  • Mohamed Berradi
  • Mehdi El Bouchti
  • Abderrahim El Bachiri
  • Ahmed El Harfi
Original Paper
  • 14 Downloads

Abstract

Our objective in this work consists in the synthesis, the characterization, the elaboration, the formulation, and the rheological study of the new phosphoric epoxy resin: pentaglycidyl ether pentaphenoxy of phosphorus (PGEPPP). Thus, we identified this polymer by Fourier transform infrared spectroscopy. Then, its chemical structure was confirmed by nuclear magnetic resonance of proton (1H NMR) and carbon (13C NMR). Furthermore, the rheological analyzes of the epoxy resin and their composite (PGEPPP/MDA/PN) were determined by the RHM01-RD HAAKE rheometer. Moreover, this epoxy polymer and their composite have been applied in flow phenomena and implementation. Finally, we proceeded to the morphological of the composite (PGEPPP/MDA/PN) using the scanning electron microscope, in order to confirm the dispersion of the natural phosphate load incorporated into the prepared composite.

Keywords

Synthesis Resin Composite FTIR NMR Rheology Morphology SEM 

Notes

Acknowledgements

I would like to thank Professor Ahmed Elharfi, responsible for the Team of Polymers and Organic Chemistry, Department of Chemistry, Faculty of Science, Ibn Tofail University, and Salma Kantouch, who collaborated to the success of this paper.

References

  1. 1.
    Bekhta A, Hsissou R, El Bouchti M, Elharfi A (2016) Synthesis, Structural, Viscosimetric, and Rheological Study, of a new trifunctional phosphorus epoxide prepolymer, tri-glycidyl ether tri-mercaptoethanol of phosphore (TGETMEP). Mediterr J Chem 6:665–673CrossRefGoogle Scholar
  2. 2.
    Li F, Lania K, Wang X, Xue G, Winter HH (2010) Steric effects on the rheology of nanocomposite gels of organoclay in dicarboxyl-terminated polybutadiene. Soft Matter 6:2442–2448CrossRefGoogle Scholar
  3. 3.
    Daniela SR, Paul B (2018) Correlation of rheological properties of ferrofluid-based magnetorheological fluids using the concentration-magnetization superposition. J Rheol 62:739CrossRefGoogle Scholar
  4. 4.
    Hsissou R, Benzidia B, Hajjaji N, Elharfi A (2018) Elaboration and electrochemical studies of the coating behavior of a new nanofunctional epoxy polymer on E24 steel in 3.5% NaCl. Port Electrochem Acta 36:259–270CrossRefGoogle Scholar
  5. 5.
    Winter HH (2009) Three views of viscoelasticity for Cox–Merz materials. Rheolo Acta 48:241–243CrossRefGoogle Scholar
  6. 6.
    Hsissou R, El Bouchti M, Elharfi A (2017) Elaboration and viscosimetric, viscoelastic and rheological studies of a new hexafunctional polyepoxide polymer: hexaglycidyl ethylene of methylene dianiline. J Mater Environ Sci 8:4349–4361Google Scholar
  7. 7.
    Heinrich G, Kluppel M (2002) Recent Advances in the theory of filler networking in elastomers. Adv Polym Sci 160:1–44CrossRefGoogle Scholar
  8. 8.
    El Gouri M, Rafik M, Hegazi SE, Grich M, Meghraoui H, Elharfi A (2010) Viscosimetry study; NMR and IR structural characterization of diglycidyl ether of bisphenol and tetraglycidyl diamino aromatic resins. Phys Chem New 52:112–128Google Scholar
  9. 9.
    Mitchell CA, Krishnamoorti R (2002) Rheological properties of diblock copolymer/layered silicate nanocomposites. J Polym Sci Part B 40:1434–1443CrossRefGoogle Scholar
  10. 10.
    Ziraoui R, Meghraoui H, Rami N, Cherkaoui O, Choukri A, Hakam O, Elharfi A (2012) Study of thermal degradation felaying behavior of two new tetra and hexa functional epoxy resins derivative organophosphates. Ann Chimie Sci Materiaux 37:85–96CrossRefGoogle Scholar
  11. 11.
    Bekhta A, ELharfi A (2014) Synthesis of novolac matrix and study of a new composite in the presence of tri-sodium phosphate. Characterization and viscosimetric study, rheological and thermal degradation. Int J Innov Appl Stud 7:662–673Google Scholar
  12. 12.
    Meghraoui H, Rami N, Grich M, Echchelh A, Elharfi A (2009) A comparative study of the dielectric properties of systems epoxy amine in low frequency electric fields. Ann Chimie Sci Materiaux 34:141–153CrossRefGoogle Scholar
  13. 13.
    Clement F, Bokobza L, Varlet J (1999) Eurofillers Villeurbane France 99Google Scholar
  14. 14.
    Zubarev AY, Odenbach S (2002) Rheological properties of dense ferrofluids. Effet of chain-like aggregates. J Magn Magn Mater 252:241–243CrossRefGoogle Scholar
  15. 15.
    Cassagnau P, Mélis F (2003) Rheology and processing of polymer nanocomposites. J Polym 44:6607–6615CrossRefGoogle Scholar
  16. 16.
    Arfin T, Mohammad F (2013) DC electrical conductivity of nano-composite polystyrene-titanium-arsenate membrane. J Ind Eng Chem 19:2046–2051CrossRefGoogle Scholar
  17. 17.
    Rodriguez E, Fernandez M, Eugenia Muñoz M, Santamaria A (2016) The effect of pressure on the viscosity of two different nanocomposites based on a PS matrix: a case of piezorheological complexity. J Rheol 60:1199–1210CrossRefGoogle Scholar
  18. 18.
    Cvek M, Mrlik M, Pavlinek V (2016) A rheological evaluation of steady shear magnetorheological flow behavior using three-parameter viscoplastic models. J Rheol 60:687–694CrossRefGoogle Scholar
  19. 19.
    Durmus A, Kasgoz A, Macosko CM (2007) Intercalated linear low density polyethylene (LLDPE)/clay nanocomposites prepared with oxidized polyethylene as a new type compatibilizer: structural, mechanical and barrier properties. J Polym 48:4492–4502CrossRefGoogle Scholar
  20. 20.
    Pozo O, Collin D, Finkelmann H, Roger D, Martonoty P (2009) Gel-like elasticity in glass-forming side-chain liquid-crystal polymers. Phys Rev E 80:031801CrossRefGoogle Scholar
  21. 21.
    El Hasnaoui M, Graça MPF, Achour ME, Costa LC (2011) Electric modulus analysis of carbon Black/copolymer composite materials. Mater Sci Appl 2:1421–1426Google Scholar
  22. 22.
    Hsissou R, Elharfi A (2018) Rheological behavior of three polymers and their hybrid composites (TGEEBA/MDA/PN), (HGEMDA/MDA/PN) and (NGHPBAE/MDA/PN). J King Saud Univ Sci 1:1.  https://doi.org/10.1016/j.jksus.2018.04.030 CrossRefGoogle Scholar
  23. 23.
    Momeni A, Joseph Filiaggi M (2016) Rheology of polyphosphate coacervates. J Rheol 60:25–34CrossRefGoogle Scholar
  24. 24.
    Abdennadher A, Vincent M, Budtova T (2016) Rheological properties of molten flax and Tencel polypropylene composite: influence of fiber morphology and concentration. J Rheol 60:191–202CrossRefGoogle Scholar
  25. 25.
    Fan Z, Advani SG (2007) Rheology of multiwall carbon nanotube suspensions. J Rheol 51:585–604CrossRefGoogle Scholar
  26. 26.
    Wang X, Heng S, Weiyang L, Miao D, Song Y (2015) Complex rheological behaviors of loach (Misgurnus anguillicaudatus) skin mucus. J Rheol 59:51–63CrossRefGoogle Scholar
  27. 27.
    Song Y, Zheng Q (2015) Linear rheology of nanofilled polymers. J Rheol 59:155–192CrossRefGoogle Scholar
  28. 28.
    Panchavarnam D, Menaka S, Anitha A, Arulmozhi M (2016) A comparative study on the properties of ZnO and ZnS naoparticles. Int J Chemtech Res 9:308–315Google Scholar
  29. 29.
    Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Hee Lee J (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375CrossRefGoogle Scholar
  30. 30.
    Causin V, Marega C, Marigo A, Ferrara G, Ferraro A (2006) Morphological and structural characterization of polypropylene/conductive graphite nanocomposites. Eur Polym J 42:3153–3161CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Agricultural Resources, Polymers and Process Engineering (LARPPE), Team of Polymer and Organic Chemistry (TPOC), Department of Chemistry, Faculty of SciencesIbn Tofail UniversityKenitraMorocco
  2. 2.Laboratory REMTEXESITH (Hight School of Textile and Clothing Industries)CasablancaMorocco
  3. 3.Royal Naval School, University DepartmentBoulevard Sour- JdidMorocco

Personalised recommendations