Advertisement

PANINFs synthesized electrochemically as an electrode material for energy storage application

  • M. R. Waikar
  • A. A. Shaikh
  • R. G. Sonkawade
Original Paper
  • 4 Downloads

Abstract

To obtain the highest performance of supercapacitive properties, it is necessary to discover an appropriate pair of electrode material and electrolyte. Supercapacitors have many applications in the industry over batteries, and our result shows the advantages of low-cost polyaniline (PANI) electrode material in supercapacitors. In the present work, the polyaniline nanofibers (PANINFs) thin films can be directly used as an electrode for supercapacitor. PANINFs electrode showed maximum specific capacitance of 633 F/g which exhibited at 5 mV/s scan rate, the specific energy density of 45.67 Wh/kg, the power density of 500 W/kg and the coulomb efficiency of 85.59% at 0.5 mA/cm2 current density with 0.32 Ω equivalent series resistance (ESR) value. The capacitance value is obtained by electrochemical impedance spectroscopy (EIS) of 20.33 mF/cm2 with the relaxation time of 0.14 s. Nanofibrous network (50–60 nm diameter) confirmed hydrophilic nature by wettability test. From the supercapacitive performance of PANINFs thin films conclude that they are promising for energy storage application.

Graphical abstract

Keywords

PANINFs Hydrophilic Cyclic voltammetry Specific capacitance Energy density 

Notes

Acknowledgements

Authors are thankful to PIFC center, Department of Physics, Shivaji University, Kolhapur for providing XRD, Contact angle, FESEM and electrochemical measurements.

References

  1. 1.
    Chen Y, Zhang X, Zhang D et al (2011) High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon N Y 49:573–580.  https://doi.org/10.1016/j.carbon.2010.09.060 CrossRefGoogle Scholar
  2. 2.
    Wang F, Sun S, Xu Y et al (2017) High performance asymmetric supercapacitor based on Cobalt Nickle Iron-layered double hydroxide/carbon nanofibres and activated carbon. Sci Rep 7:1–11.  https://doi.org/10.1038/s41598-017-04807-1 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Anwar AW, Majeed A, Iqbal N et al (2015) Specific capacitance and cyclic stability of graphene based metal/metal oxide nanocomposites: a review. J Mater Sci Technol 31:699–707.  https://doi.org/10.1016/j.jmst.2014.12.012 CrossRefGoogle Scholar
  4. 4.
    Ghouri ZK, Shaheer Akhtar M, Zahoor A et al (2015) High-efficiency super capacitors based on hetero-structured α-MnO2 nanorods. J Alloys Compd 642:210–215.  https://doi.org/10.1016/j.jallcom.2015.04.082 CrossRefGoogle Scholar
  5. 5.
    Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828.  https://doi.org/10.1039/C1CS15060J CrossRefPubMedGoogle Scholar
  6. 6.
    Gupta V, Miura N (2006) Influence of the microstructure on the supercapacitive behavior of polyaniline/single-wall carbon nanotube composites. J Power Sources 157:616–620.  https://doi.org/10.1016/j.jpowsour.2005.07.046 CrossRefGoogle Scholar
  7. 7.
    Giuliani E, Demetrio RFÆ, Soares AW (2008) Electrical properties of electrodeposited polyaniline nanotubes. J Mater Sci Mater Electron 19:457–462.  https://doi.org/10.1007/s10854-007-9362-x CrossRefGoogle Scholar
  8. 8.
    Dhawale DS, Dubal DP, Jamadade VS et al (2010) Fuzzy nanofibrous network of polyaniline electrode for supercapacitor application. Synth Met 160:519–522.  https://doi.org/10.1016/j.synthmet.2010.01.021 CrossRefGoogle Scholar
  9. 9.
    Chao Y, Chen S, Chen H et al (2018) Densely packed porous graphene film for high volumetric performance supercapacitor. Electrochim Acta 276:118–124.  https://doi.org/10.1016/j.electacta.2018.04.156 CrossRefGoogle Scholar
  10. 10.
    Zhang J, Ji X, Zhou J et al (2018) Pyridinium substituted BODIPY as NIR fluorescent probe for simultaneous sensing of hydrogen sulphide/glutathione and cysteine/homocysteine. Sens Actuators B Chem 257:1076–1082.  https://doi.org/10.1016/j.snb.2017.10.133 CrossRefGoogle Scholar
  11. 11.
    Ghouri ZK, Barakat NAM, Kim HY (2015) Influence of copper content on the electrocatalytic activity toward methanol oxidation of Co ‡ Cu y alloy nanoparticles-decorated CNFs. Sci Rep 5:1–12.  https://doi.org/10.1063/1.109598 CrossRefGoogle Scholar
  12. 12.
    Ghouri ZK, Barakat NAM, Park M et al (2015) Synthesis and characterization of Co/SrCO3 nanorods-decorated carbon nanofibers as novel electrocatalyst for methanol oxidation in alkaline medium. Ceram Int 41:6575–6582.  https://doi.org/10.1016/j.ceramint.2015.01.103 CrossRefGoogle Scholar
  13. 13.
    Barakat NAM, El-Newehy M, Al-Deyab SS, Kim HY (2014) Cobalt/copper-decorated carbon nanofibers as novel non-precious electrocatalyst for methanol electrooxidation. Nanoscale Res Lett 9:1–10.  https://doi.org/10.1186/1556-276X-9-2 CrossRefGoogle Scholar
  14. 14.
    Khan Z, Khaled G, Saeed E, Barakat ANAM (2017) Applicable anode based on Co3O4–SrCO3 heterostructure nanorods-incorporated CNFs with low-onset potential for DUFCs. Appl Nanosci 7:625–631.  https://doi.org/10.1007/s13204-017-0601-z CrossRefGoogle Scholar
  15. 15.
    Al-Meer S, Ghouri ZK, Elsaid K et al (2017) Engineering of magnetically separable ZnFe2O4@ TiO2 nanofibers for dye-sensitized solar cells and removal of pollutant from water. J Alloys Compd 723:477–483.  https://doi.org/10.1016/j.jallcom.2017.06.211 CrossRefGoogle Scholar
  16. 16.
    Ghouri ZK, Barakat NAM, Kim HY et al (2016) Nano-engineered ZnO/CeO2dots@CNFs for fuel cell application. Arab J Chem 9:219–228.  https://doi.org/10.1016/j.arabjc.2015.05.024 CrossRefGoogle Scholar
  17. 17.
    Ali Y, Kumar V, Sonkawade RG et al (2013) Two-step electrochemical synthesis of Au nanoparticles decorated polyaniline nanofiber. Vacuum 93:79–83.  https://doi.org/10.1016/j.vacuum.2013.01.007 CrossRefGoogle Scholar
  18. 18.
    Zhang H, Wang J, Wang Z et al (2009) Electrodeposition of polyaniline nanostructures: a lamellar structure. Synth Met 159:277–281CrossRefGoogle Scholar
  19. 19.
    Prasad KR, Munichandraiah N (2002) Potentiodynamically deposited polyaniline on stainless steel. J Electrochem Soc 149:A1393.  https://doi.org/10.1149/1.1509458 CrossRefGoogle Scholar
  20. 20.
    Zhou KL, Wang H, Jiu JT et al (2018) Polyaniline films with modified nanostructure for bifunctional flexible multicolor electrochromic and supercapacitor applications. Chem Eng J 345:290–299.  https://doi.org/10.1016/j.cej.2018.03.175 CrossRefGoogle Scholar
  21. 21.
    Yuan Y, Zhu W, Du G et al (2018) Two-step method for synthesizing polyaniline with bimodal nanostructures for high performance supercapacitors. Electrochim Acta.  https://doi.org/10.1016/j.electacta.2018.06.006 CrossRefGoogle Scholar
  22. 22.
    Ghouri ZK, Barakat NAM, Saud PS et al (2016) Supercapacitors based on ternary nanocomposite of TiO2&Pt@graphenes. J Mater Sci Mater Electron 27:3894–3900.  https://doi.org/10.1007/s10854-015-4239-x CrossRefGoogle Scholar
  23. 23.
    Ghouri ZK, Barakat NAM, Kim HY (2015) Synthesis and electrochemical properties of MnO2 and co-decorated graphene as novel nanocomposite for electrochemical super capacitors application. Energy Environ Focus 4:34–39.  https://doi.org/10.1166/eef.2015.1136 CrossRefGoogle Scholar
  24. 24.
    Ghouri ZK, Barakat NAM, Alam AM et al (2015) Synthesis and characterization of Nitrogen-doped & CaCO3-decorated reduced graphene oxide nanocomposite for electrochemical supercapacitors. Electrochim Acta 184:193–202.  https://doi.org/10.1016/j.electacta.2015.10.069 CrossRefGoogle Scholar
  25. 25.
    Zhang X, Meng X, Wang Q et al (2018) Preparation and electrochemical investigation of polyaniline nanowires for high performance supercapacitor. Mater Lett 217:312–315.  https://doi.org/10.1016/j.matlet.2018.01.112 CrossRefGoogle Scholar
  26. 26.
    Deshmukh PR, Shinde NM, Patil SV et al (2013) Supercapacitive behavior of polyaniline thin films deposited on fluorine doped tin oxide (FTO) substrates by microwave-assisted chemical route. Chem Eng J 223:572–577.  https://doi.org/10.1016/j.cej.2013.03.056 CrossRefGoogle Scholar
  27. 27.
    Ghouri ZK, Barakat NAM, Alam A-M et al (2015) Facile synthesis of Fe/CeO2-doped CNFs and their capacitance behavior. Int J Electrochem Sci 10:2064–2071Google Scholar
  28. 28.
    Sumboja A, Wang X, Yan J, Lee PS (2012) Nanoarchitectured current collector for high rate capability of polyaniline based supercapacitor electrode. Electrochim Acta 65:190–195.  https://doi.org/10.1016/j.electacta.2012.01.046 CrossRefGoogle Scholar
  29. 29.
    Dhawale DS, Salunkhe RR, Jamadade VS et al (2010) Hydrophilic polyaniline nanofibrous architecture using electrosynthesis method for supercapacitor application. Curr Appl Phys 10:904–909.  https://doi.org/10.1016/j.cap.2009.10.020 CrossRefGoogle Scholar
  30. 30.
    Li N, Xiao Y, Xu C et al (2013) Facile preparation of polyaniline nanoparticles via electrodeposition for supercapacitors. Int J Electrochem Sci 8:1181–1188Google Scholar
  31. 31.
    Sazou D, Kourouzidou M, Pavlidou E (2007) Potentiodynamic and potentiostatic deposition of polyaniline on stainless steel: electrochemical and structural studies for a potential application to corrosion control. Electrochim Acta 52:4385–4397.  https://doi.org/10.1016/j.electacta.2006.12.020 CrossRefGoogle Scholar
  32. 32.
    Saini P, Choudhary V, Singh BP et al (2009) Polyaniline—MWCNT nanocomposites for microwave absorption and EMI shielding. Mater Chem Phys 113:919–926.  https://doi.org/10.1016/j.matchemphys.2008.08.065 CrossRefGoogle Scholar
  33. 33.
    Gupta V, Miura N (2005) Large-area network of polyaniline nanowires prepared by potentiostatic deposition process. Electrochem Commun 7:995–999.  https://doi.org/10.1016/j.elecom.2005.07.008 CrossRefGoogle Scholar
  34. 34.
    Jamadade VS, Dhawale DS, Lokhande CD (2010) Studies on electrosynthesized leucoemeraldine, emeraldine and pernigraniline forms of polyaniline films and their supercapacitive behavior. Synth Met 160:955–960.  https://doi.org/10.1016/j.synthmet.2010.02.007 CrossRefGoogle Scholar
  35. 35.
    Sowmya SY, Selvakumar M (2016) Supercapacitor studies of electrochemically synthesized multi-layered polyaniline on stainless steel substrate. Ionics (Kiel) 22:1729–1739.  https://doi.org/10.1007/s11581-016-1705-2 CrossRefGoogle Scholar
  36. 36.
    Buron CC, Lakard B, Monnin AF et al (2011) Elaboration and characterization of polyaniline films electrodeposited on tin oxides. Synth Met 161:2162–2169.  https://doi.org/10.1016/j.synthmet.2011.08.021 CrossRefGoogle Scholar
  37. 37.
    Li GR, Feng ZP, Zhong JH et al (2010) Electrochemical synthesis of polyaniline nanobelts with predominant electrochemical performances. Macromolecules 43:2178–2183.  https://doi.org/10.1021/ma902317k CrossRefGoogle Scholar
  38. 38.
    Shinde PA, Lokhande VC, Chodankar NR et al (2016) Enhanced electrochemical performance of monoclinic WO3 thin film with redox additive aqueous electrolyte. J Colloid Interface Sci 483:261–267.  https://doi.org/10.1016/j.jcis.2016.08.011 CrossRefPubMedGoogle Scholar
  39. 39.
    Deshmukh PR, Pusawale SN, Jamadade VS et al (2011) Microwave assisted chemical bath deposited polyaniline films for supercapacitor application. J Alloys Compd 509:5064–5069.  https://doi.org/10.1016/j.jallcom.2010.12.009 CrossRefGoogle Scholar
  40. 40.
    Dhawale DS, Vinu A, Lokhande CD (2011) Stable nanostructured polyaniline electrode for supercapacitor application. Electrochim Acta 56:9482–9487.  https://doi.org/10.1016/j.electacta.2011.08.042 CrossRefGoogle Scholar
  41. 41.
    Li T, Zhou Y, Liang B et al (2017) One–pot synthesis and electrochemical properties of polyaniline nanofibers through simply tuning acid–base environment of reaction medium. Electrochim Acta 249:33–42.  https://doi.org/10.1016/j.electacta.2017.07.177 CrossRefGoogle Scholar
  42. 42.
    Dubal DP, Fulari VJ, Lokhande CD (2012) Effect of morphology on supercapacitive properties of chemically grown β-Ni(OH)2 thin films. Microporous Mesoporous Mater 151:511–516.  https://doi.org/10.1016/j.micromeso.2011.08.034 CrossRefGoogle Scholar
  43. 43.
    Dubal DP, Gund GS, Holze R et al (2013) Surfactant-assisted morphological tuning of hierarchical CuO thin films for electrochemical supercapacitors. Dalton Trans 42:6459.  https://doi.org/10.1039/c3dt50275a CrossRefPubMedGoogle Scholar
  44. 44.
    Jagadale AD, Dubal DP, Lokhande CD (2012) Electrochemical behavior of potentiodynamically deposited cobalt oxyhydroxide (CoOOH) thin films for supercapacitor application. Mater Res Bull 47:672–676.  https://doi.org/10.1016/j.materresbull.2011.12.029 CrossRefGoogle Scholar
  45. 45.
    Mujawar SH, Ambade SB, Battumur T et al (2011) Electropolymerization of polyaniline on titanium oxide nanotubes for supercapacitor application. Electrochim Acta 56:4462–4466.  https://doi.org/10.1016/j.electacta.2011.02.043 CrossRefGoogle Scholar
  46. 46.
    Chen W, Rakhi RB, Alshareef HN (2013) Facile synthesis of polyaniline nanotubes using reactive oxide templates for high energy density pseudocapacitors. J Mater Chem A 1:3315–3324.  https://doi.org/10.1039/c3ta00499f CrossRefGoogle Scholar
  47. 47.
    Kuang H, Cao Q, Wang X et al (2013) Influence of the reaction temperature on polyaniline morphology and evaluation of their performance as supercapacitor electrode. J Appl Polym Sci 130:3753–3758.  https://doi.org/10.1002/app.39650 CrossRefGoogle Scholar
  48. 48.
    Chen YC, Hsu YK, Lin YG et al (2011) Highly flexible supercapacitors with manganese oxide nanosheet/carbon cloth electrode. Electrochim Acta 56:7124–7130.  https://doi.org/10.1016/j.electacta.2011.05.090 CrossRefGoogle Scholar
  49. 49.
    Shinde PA, Lokhande AC, Chodankar NR et al (2017) Temperature dependent surface morphological modifications of hexagonal WO3 thin films for high performance supercapacitor application. Electrochim Acta 224:397–404.  https://doi.org/10.1016/j.electacta.2016.12.066 CrossRefGoogle Scholar
  50. 50.
    Li T, Qin Z, Liang B et al (2015) Morphology-dependent capacitive properties of three nanostructured polyanilines through interfacial polymerization in various acidic media. Electrochim Acta 177:343–351.  https://doi.org/10.1016/j.electacta.2015.03.169 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • M. R. Waikar
    • 1
  • A. A. Shaikh
    • 1
  • R. G. Sonkawade
    • 1
  1. 1.Department of PhysicsShivaji UniversityKolhapurIndia

Personalised recommendations