Poly(hydroxyamide) as support for thin-film composite membranes for water treatment

  • Marcial Yam-Cervantes
  • Ileana León-Campos
  • Julio Sánchez
  • José Luis Santiago-García
  • Neyi Eloisa Estrella-Gómez
  • Manuel Aguilar-Vega
Original Paper


Preparation of a porous support for a thin-film composite (TFC) membrane was achieved based on a highly aromatic poly(hydroxyamide) (PHA) formed from 5-hydroxyisophthalic acid and 4,4′-(hexafluoroisopropylidene)dianiline. PHA synthesis was confirmed by Fourier transform infrared and proton nuclear magnetic resonance (1H NMR) spectroscopies. PHA was soluble in N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAc), and tetrahydrofuran (THF) with Mw 6.1 × 104 Da. Moreover, PHA showed good thermal stability up to 390 °C. Parameters for an appropriated PHA porous structure support membrane by the phase-inversion method were determined. Porous PHA support offers higher thermal stability and better adhesion between support amide thin skin layer than the ones used actually. Water permeation flux was 543 L m−2 h−1 for PHA porous support, whereas thin-film composite membrane PHA-TFC formed presented a decrease in water permeation flux (2.5 L m−2 h−1) and a salt rejection capacity of 29% which situates it as a nanofiltration membrane.


Polyhydroxyamide Thin-film composite membrane Nanofiltration Interfacial reaction 



The authors are grateful for the financial support by CONACYT-FOMIX under the Grant number 108200. Marcial Yam‐Cervantes gratefully acknowledge financial support from CONACyT Grant 344563. The authors are thankful to Dr. Patricia Quintana and Dr. Emmanuel Hernández for 1H-NMR analysis from the National Laboratory of Nano and Biomaterials (LANNBIO). Partial funding from Grants FOMIX-Yucatán 2008-108160, CONACYT LAB-2009-01-123913 is acknowledged.


  1. 1.
    Le NL, Nunez SP (2016) Materials and membrane technologies for water and energy sustainability. Sustain Mater Technol 7:1–28Google Scholar
  2. 2.
    Goh PS, Matsuura T, Ismail AF, Hilal N (2016) Recent trends in membranes and membrane processes for desalination. Desalination 391:43–60CrossRefGoogle Scholar
  3. 3.
    Lee A, Elam JW, Darling SB (2016) Membrane materials for water purification: design, development, and application. Environ Sci Water Res Technol 2:17–42CrossRefGoogle Scholar
  4. 4.
    Geise GM, Paul DR, Freeman BD (2014) Fundamental water and salt transport properties of polymeric materials. Prog Polym Sci 39:1–42CrossRefGoogle Scholar
  5. 5.
    Hosseini SS, Bringas E, Tan NR, Ortiz I, Ghahramani M, Shahmirzadi MAA (2016) Recent progress in development of high performance polymeric membranes and materials for metal plating wastewater treatment: a review. J Water Process Eng 9:78–110CrossRefGoogle Scholar
  6. 6.
    Paul M, Jons SD (2016) Chemistry and fabrication of polymeric nanofiltration membranes: a review. Polymer 103:417–456CrossRefGoogle Scholar
  7. 7.
    Ismail AF, Padaki M, Hilal N, Matsuura T, Lau WJ (2015) Thin film composite membranes-recent development and future potential. Desalination 356:140–148CrossRefGoogle Scholar
  8. 8.
    Zeng Y, Wang L, Zhang L, Yu JQ (2018) An acid resistant nanofiltration membrane prepared from a precursor of poly(s-triazine-amine) by interfacial polymerization. J Membr Sci 546:225–233CrossRefGoogle Scholar
  9. 9.
    Zhang R, Yu S, Shi W, Wang W, Wang X, Zhang Z, Li L, Zhang B, Bao X (2017) A novel polyesteramide thin film composite nanofiltration membrane prepared by interfacial polymerization of serinol and trimesoyl chloride (TMS) catalyzed by 4-dimethylaminopyridine. J Membr Sci 542:68–80CrossRefGoogle Scholar
  10. 10.
    Xie W, Geise GM, Freeman BD, Lee H-S, Byun G, McGrath JM (2012) Polyamide interfacial composite membranes prepared from m-phenylene diamina, trimesoyl chloride and a new disulfonated diamine. J Membr Sci 403–404:152–161CrossRefGoogle Scholar
  11. 11.
    Yakavalangi ME, Rimaz S, Vatanpour V (2017) Effect of surface properties of polysulfone support on the performance of thin film composite polyamide reverse osmosis membranes. J Appl Polym Sci 134:44444Google Scholar
  12. 12.
    Ren J, O´Grady B, de Jesus G, McCutcheon JR (2016) Sulfonated polysulfone supported high performance thin film composite membranes for forward osmosis. Polymer 103:486–497CrossRefGoogle Scholar
  13. 13.
    Khorshidi B, Thundat T, Fleck BA, Sadrzadeh M (2016) A novel approach toward fabrication of high performance thin film composite polyamide membranes. Sci Rep 6:22069CrossRefGoogle Scholar
  14. 14.
    Zhou C, Shi Y, Sun C, Yu S, Liu M, Gao C (2014) Thin film composite membranes formed by interfacial polymerization with natural material sericin and trimesoyl chloride for nanofiltration. J Membr Sci 471:381–391CrossRefGoogle Scholar
  15. 15.
    Li Y, Su Y, Li J, Zhao X, Zahng R, Fan X, Zhu J, Ma Y, Liu Y, Jian Z (2015) Preparation of thin film composite nanofiltration membrane with improved structural stability thorough the mediation of polydopamine. J Membr Sci 476:10–19CrossRefGoogle Scholar
  16. 16.
    Alsvik IL, Hägg M-B (2013) Preparation of thin film composite membranes with polyamide film on hydrophilic supports. J Membr Sci 428:225–231CrossRefGoogle Scholar
  17. 17.
    Yang S, Zhen H, Su B (2017) Polyamide thin film composite (TFC) membranes via interfacial polymerization on hydrolyzed polyacrylonitrile support for solvent resistant nanofiltration. RSC Adv 7:42800–42810CrossRefGoogle Scholar
  18. 18.
    Bui N-N, McCutcheon JR (2013) Hydrophilic nanofibers as new supports for thin film composite membranes for engineered osmosis. Environ Sci Technol 47:1761–1769CrossRefGoogle Scholar
  19. 19.
    Yamazaki N, Matsumoto M, Higashi F (1975) Studies on reactions of the N-phosphonium salts of pyridines. XIV. Wholly aromatic polyamides by the direct polycondensation reaction by using phosphites in the presence of metal salts. J Polym Sci Polym Chem Ed 13:1373–1380CrossRefGoogle Scholar
  20. 20.
    Boom RM, van den Boomgaard T, van den Verg JWA, Smolders CA (1993) Linearized cloudpoint curve correlation for ternary systems consisting of one polymer, one solvent and one non-solvent. Polymer 34:2348–2356CrossRefGoogle Scholar
  21. 21.
    Yam-Cervantes MA, Santiago-García JL, Loría-Bastarrachea MI, Duarte-Aranda S, Ruiz-Treviño FA, Aguilar-Vega M (2017) Sulfonated polyphenylsulfone asymmetric membranes: effect of coagulation bath (acetic acid-NaHCO3/isopropanol) on morphology and antifouling properties. J Appl Polym Sci 134:44502CrossRefGoogle Scholar
  22. 22.
    Rajesh S, Shobana KH, Aitharaj S, Mohan DR (2011) Preparation, morphology, performance, and hydrophilicity studies of poly(amide-imide) incorporated cellulose acetate ultrafiltration membranes. Ind Eng Chem Res 50:5550–5564CrossRefGoogle Scholar
  23. 23.
    Oh N-W, Jegal J, Lee K-H (2001) Preparation and characterization of nanofiltration composite membranes using polyacrynitrile (PAN). II. Preparation and characterization of polyamide composite membranes. J Appl Polym Sci 80:2729–2736CrossRefGoogle Scholar
  24. 24.
    Kanagaraj P, Nagendran A, Rana D, Matsuura T, Neelakandan S, Malarvizhi K (2015) Effects of polyvinylpyrrolidone on the permeation and fouling-resistance properties of polyetherimide ultrafiltration membranes. Ind Eng Chem Res 54:4832–4838CrossRefGoogle Scholar
  25. 25.
    Zhu J, Zheng J, Zhang Q, Zhang S (2016) Antifouling ultrafiltration membrane fabricated from poly (arylene ether ketone) bearing hydrophilic hydroxyl groups. J Appl Polym Sci 133(42809):1–11Google Scholar
  26. 26.
    Santiago-Garcia JL, Perez-Francisco JM, Zolotukhin MG, Vázquez-Torres H, Aguilar-Vega M, González-Díaz MO (2017) Gas transport properties of novel poly- and copolyamides bearing bulky functional groups. J Membr Sci 522:333–342CrossRefGoogle Scholar
  27. 27.
    Puspasari T, Pradeep N, Peinemann KV (2015) Crosslinked cellulose thin film composite nanofiltration membranes with zero salt rejection. J Membr Sci 491:132–137CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Unidad de MaterialesCentro de Investigación Científica de Yucatán, A.C.MéridaMexico
  2. 2.Departamento de Ciencias del Ambiente, Facultad de Química y BiologíaUniversidad de Santiago de ChileSantiagoChile
  3. 3.LabNegLabortatorio de Análisis Clínico y Diagnóstico MolecularMéridaMexico

Personalised recommendations