Advertisement

Redox-responsive micelles self-assembled from multi-block copolymer for co-delivery of siRNA and hydrophobic anticancer drug

  • Benxing Liu
  • Lianjiang Tan
  • Changyu He
  • Bingya Liu
  • Zhenggang Zhu
  • Bing Gong
  • Yu-Mei Shen
Original Paper

Abstract

Novel redox-responsive amphiphilic cationic multi-block copolymers PEG2000PLA3000PEI1200PLA3000PEG2000 and PEG2000PLA3000PEI1800PLA3000PEG2000 were synthesized and self-assembled into micelles for co-delivery of siRNA and hydrophobic doxorubicin (DOX). The chemical structure and molecular weight of the copolymers were characterized by 1H nuclear magnetic resonance and gel permeation chromatography, respectively. The copolymeric micelles were examined by dynamic light scattering, and their size, zeta potential and critical micelle concentration were determined. The in vitro drug release analyses indicated that reductive environment can trigger the release of DOX and siRNA by breaking the micelles. MTT assay demonstrated that the DOX/siRNA-loaded micelles are capable of inhibiting proliferation of SGC7901 cells. The results of fluorescence microscopy and flow cytometry verify the simultaneous delivery of DOX and siRNA from the nanomicellar particles into SGC7901 cells. The reduction-responsive cationic copolymers will provide a platform for constructing drug/gene delivery system toward cancer therapy.

Keywords

Amphiphilic Multi-block copolymer Drug carrier Gene/drug dual delivery 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 81671802) and the SJTU Biomedical Engineering Joint Project (YG2017QN55).

Supplementary material

289_2018_2600_MOESM1_ESM.docx (190 kb)
Supplementary material 1 (DOCX 190 kb)

References

  1. 1.
    Kakizawa Y, Kataoka K (2002) Block copolymer micelles for delivery of gene and related compounds. Adv Drug Deliv Rev 54:203–222CrossRefGoogle Scholar
  2. 2.
    Zhang ZK, Ma RJ, Shi LQ (2014) Cooperative macromolecular self-assembly toward polymeric assemblies with multiple and bioactive functions. Acc Chem Res 47:1426–1437CrossRefGoogle Scholar
  3. 3.
    Lv J, Hao XF, Yang J, Feng YK, Behl M, Lendlein A (2014) Self-assembly of polyethylenimine-modified biodegradable complex micelles as gene transfer vector for proliferation of endothelial cells. Macromol Chem Phys 215:2463–2472CrossRefGoogle Scholar
  4. 4.
    Sun TM, Du JZ, Yan LF, Mao HQ, Wang J (2008) Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery. Biomaterials 29:4348–4355CrossRefGoogle Scholar
  5. 5.
    Rosler A, Vandermeulen GW, Klok HA (2012) Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Del Rev 64:270–279CrossRefGoogle Scholar
  6. 6.
    Huo H, Gao YK, Wang TY, Jiang HT, Wang SL, Jiang TY (2012) The investigation on polyion complex micelles composed of diammonium glycyrrhizinate/poly(ethylene glycol)-glycidyltrimethylammonium chloride-grafted polyasparthydrazide. AAPS PharmSciTech 13:1367–1376CrossRefGoogle Scholar
  7. 7.
    Petersen H, Petra MF, Alison LM, Kunath K, Stolnik S, Clive JR, Fischer D, Davies MC, Kissel T (2002) Polyethylenimine-graft-poly(ethylene glycol) copolymers: influence of copolymer block structure on DNA complexation and biological activities as gene delivery system. Bioconjugate Chem 13:845–854CrossRefGoogle Scholar
  8. 8.
    Zhang Z, Yang C, Duan Y, Wang Y, Liu J, Wang L, Kong D (2010) Poly(ethylene glycol) analogs grafted with low molecular weight poly(ethylene imine) as non-viral gene vectors. Acta Biomater 6:2650–2657CrossRefGoogle Scholar
  9. 9.
    Nouri N, Talebi M, Abas AP (2012) Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 1:27CrossRefGoogle Scholar
  10. 10.
    Schaffert D, Wagner E (2008) Gene therapy progress and prospects: synthetic polymer-based systems. Gene Ther 15:1131–1138CrossRefGoogle Scholar
  11. 11.
    Burke PA, Pun SH, Reineke TM (2013) Advancing polymeric delivery systems amidst a nucleic acid therapy renaissance. ACS Macro Lett 2:928–934CrossRefGoogle Scholar
  12. 12.
    Park TG, Ji HJ, Kim SW (2006) Current status of polymeric gene delivery systems. Adv Drug Deliv Rev 58:467–486CrossRefGoogle Scholar
  13. 13.
    Gohy JF, Willet N, Varshney S, Zhang JXZ, Jerome R (2001) Core-shell-corona micelles with a responsive shell. Angew Chem Int Ed 40:3214–3216CrossRefGoogle Scholar
  14. 14.
    He C, Zhang Z, Yang Q, Chang Q, Shao Z, Gong B, Shen YM, Liu B, Zhu Z (2016) Reductive triblock copolymer micelles with a dynamic covalent linkage deliver antimiR-21 for gastric cancer therapy. Polym Chem 7:4352–4366CrossRefGoogle Scholar
  15. 15.
    Xiao RZ, Zeng ZW, Zhou GL, Wang JJ, Li FZ, Wang AM (2010) Recent advances in PEG–PLA block copolymer nanoparticles. Int J Nanomed 5:1057–1065Google Scholar
  16. 16.
    Prevette LE, Lynch ML, Reineke TM (2010) Amide spacing influences pDNA binding of poly(amidoamine)s. Biomacromolecules 11:326–332CrossRefGoogle Scholar
  17. 17.
    Mary XT, Redemann CT, Szoka FC (1996) In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjugate Chem 7:703–714CrossRefGoogle Scholar
  18. 18.
    Wong SY, Pelet JM, Putnam D (2007) Polymer systems for gene delivery-past, present, and future. Prog Polym Sci 32:799–837CrossRefGoogle Scholar
  19. 19.
    Pandey AP, Sawant KK (2016) Polyethylenimine: a versatile, multifunctional non-viral vector for nucleic acid delivery. Mater Sci Eng C 68:904–918CrossRefGoogle Scholar
  20. 20.
    Mintzer MA, Simanek EE (2009) Nonviral vectors for gene delivery. Chem Rev 109:259–302CrossRefGoogle Scholar
  21. 21.
    Godbey WT, Wu KK, Mikos AG (1999) Size matters: molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle. J Biomed Mater Res 45:268–275CrossRefGoogle Scholar
  22. 22.
    Fischer D, Bieber T, Li Y, Elsässer HP, Kissel T (1999) A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res 16:1273–1279CrossRefGoogle Scholar
  23. 23.
    Ogris M, Steinlein P, Kursa M, Mechtler K, Kircheis R, Wagner E (1998) The size of DNA/transferrin-PEI complexes is an important factor for gene expression in cultured cells. Gene Ther 5:1425–1433CrossRefGoogle Scholar
  24. 24.
    Thomas M, Klibanov AM (2002) Proc Natl Acad Sci USA 99:14640–14645CrossRefGoogle Scholar
  25. 25.
    Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T (2003) In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24:1121–1131CrossRefGoogle Scholar
  26. 26.
    Lv P, Zhou C, Zhao Y, Liao X, Yang B (2017) Modified-epsilon-polylysine-grafted-PEI-β-cyclodextrin supramolecular carrier for gene delivery. Carbohydr Polym 168:103–111CrossRefGoogle Scholar
  27. 27.
    Moghimi SM, Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A (2005) A two stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol Ther 11:990–995CrossRefGoogle Scholar
  28. 28.
    Kafil V, Omidi Y (2011) Cytotoxic impacts of linear and branched polyethylenimine nanostructures in a431 cells. Bioimpacts 1:23–30PubMedPubMedCentralGoogle Scholar
  29. 29.
    Fitzsimmons REB, Uludag H (2012) Specific effects of PEGylation on gene delivery efficacy of polyethylenimine: interplay between PEG substitution and N/P ratio. Acta Biomater 8:3941–3955CrossRefGoogle Scholar
  30. 30.
    Lee M, Kim SW (2005) Polyethylene glycol-conjugated copolymers for plasmid DNA delivery. Pharm Res 22:1–10CrossRefGoogle Scholar
  31. 31.
    Xu L, Anchordoquy T (2011) Drug delivery trends in clinical trials and translational medicine: challenges and opportunities in the delivery of nucleic acid-based therapeutics. J Pharm Sci 100:38–52CrossRefGoogle Scholar
  32. 32.
    Wang W, Balk M, Deng Z, Wischke C, Gossen M, Behl M, Ma N, Lendlein A (2016) Engineering biodegradable micelles of polyethylenimine-based amphiphilic block copolymers for efficient DNA and siRNA delivery. J Control Release 242:71–79CrossRefGoogle Scholar
  33. 33.
    Wang Y, Gao S, Ye WH, Yoon HS, Yang YY (2006) Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer. Nat Mater 5:791–796CrossRefGoogle Scholar
  34. 34.
    Wang Y, Wang LS, Goh SH, Yang YY (2007) Synthesis and characterization of cationic micelles self-assembled from a biodegradable copolymer for gene delivery. Biomacromolecules 8:1028–1037CrossRefGoogle Scholar
  35. 35.
    Wang Y, Ke CY, Beh CW, Liu SQ, Goh SH, Yang YY (2007) The self-assembly of biodegradable cationic polymer micelles as vectors for gene transfection. Biomaterials 28:5358–5368CrossRefGoogle Scholar
  36. 36.
    Yang Q, Bai L, Zhang Y, Zhu F, Xu Y, Shao Z, Shen YM, Gong B (2014) Dynamic covalent diblock copolymers: instructed coupling, micellation and redox responsiveness. Macromolecules 47:7431–7441CrossRefGoogle Scholar
  37. 37.
    Yang Q, Tan L, He C, Liu B, Xu Y, Zhu Z, Shao Z, Gong B, Shen YM (2015) Redox-responsive micelles self-assembled from dynamic covalent block copolymers for intracellular drug delivery. Acta Biomater 17:193–200CrossRefGoogle Scholar
  38. 38.
    Hu W, He C, Tan L, Liu B, Zhu Z, Gong B, Shen YM, Shao Z (2016) Synthesis and micellization of redox-responsive dynamic covalent multi-block copolymers. Polym Chem 7:3145–3155CrossRefGoogle Scholar
  39. 39.
    Yang Q, He C, Zhang Z, Tan L, Liu B, Zhu Z, Shao Z, Gong B, Shen Y (2016) Redox-responsive flower-like micelles of poly(l-lactic acid)-b-poly(ethylene glycol)-b-poly(l-lactic acid) for intracellular drug delivery. Polymer 90:351–362CrossRefGoogle Scholar
  40. 40.
    Wang X, He C, Yang Q, Tan L, Liu B, Zhu Z, Gong B, Shen Y (2017) Dynamic covalent linked triblock copolymer micelles for glutathione-mediated intracellular drug delivery. Mater Sci Eng C 77:34–44CrossRefGoogle Scholar
  41. 41.
    Tian Z, Huang R, Tan L (2016) Amphiphilic drug–drug assembly via dual responsive linkages for small-molecule anticancer drug delivery. RSC Adv 6:66420–66430CrossRefGoogle Scholar
  42. 42.
    Jin Y, Song L, Su Y, Zhu LJ, Pang Y, Qiu F (2011) Oxime linkage: a robust tool for the design of pH-sensitive polymeric drug carriers. Biomacromolecules 12:3460–3468CrossRefGoogle Scholar
  43. 43.
    Lukyanov AN, Torchilin VP (2004) Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev 56:1273–1289CrossRefGoogle Scholar
  44. 44.
    Adams ML, Lavasanifar A, Kwon GS (2003) Amphiphilic block copolymers for drug delivery. J Pharm Sci 92:1343–1355CrossRefGoogle Scholar
  45. 45.
    Schmalenberg KE, Frauchiger L, Nikkhouyalbers AL, Uhrich KE (2001) Cytotoxicity of a unimolecular polymeric micelle and its degradation products. Biomacromolecules 2:851–855CrossRefGoogle Scholar
  46. 46.
    Chow EK, Ho D (2013) Cancer nanomedicine: from drug delivery to imaging. Sci Transl Med 5:214–216Google Scholar
  47. 47.
    Saito G, Swanson JA, Lee K-D (2003) Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv Drug Deliv Rev 55:199–215CrossRefGoogle Scholar
  48. 48.
    Ilangovan G, Li H, Zweier JL, Kuppusamy P (2002) In vivo measurement of tumor redox environment using EPR spectroscopy. Mol Cell Biochem 234–235:393–398CrossRefGoogle Scholar
  49. 49.
    Kuppusamy P, Li H, Ilangovan G, Cardounel AJ, Zweier JL, Yamada K, Krishna MC, Mitchell JB (2002) Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels. Cancer Res 62:307–312PubMedGoogle Scholar
  50. 50.
    Gary DJ, Puri N, Won YY (2007) Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J Control Release 121:64–73CrossRefGoogle Scholar
  51. 51.
    Koo AN, Lee HJ, Kim SE, Chang JH, Park C, Kim C (2008) Disulfide-cross-linked PEG-poly (amino acids) copolymer micelles for glutathione-mediated intracellular drug delivery. Chem Commun 48:6570–6572CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shanghai Center for Systems Biomedicine, Key Laboratory of Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
  3. 3.College of ChemistryBeijing Normal UniversityBeijingChina
  4. 4.Department of Chemistry, University at BuffaloState University of New YorkBuffaloUSA

Personalised recommendations