Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and wide-angle X-ray scattering (WAXS) of polypropylene (PP)/cyclic olefin copolymer (COC) blends for qualitative and quantitative analysis

  • Aravinthan Gopanna
  • Ramesh N. Mandapati
  • Selvin P. Thomas
  • Krishnaprasad Rajan
  • Murthy ChavaliEmail author
Original Paper


In this study, polypropylene (PP), a versatile commodity thermoplastic, and cyclic olefin copolymer (COC), an amorphous engineering thermoplastic, were blended over full composition range by melt-mixing technique using a co-rotating twin-screw extruder. PP is likely to be compatible with COC due to its olefinic behaviour, and PP/COC blends provide significant promising properties. FTIR spectra, Raman spectra and wide-angle X-ray scattering (WAXS) patterns of polypropylene, cyclic olefin copolymer and its blends were recorded in solid phases and carried out qualitative and quantitative analysis in detail. The characteristic absorption peaks of PP, COC and PP/COC blends were determined and compared. PP/COC blends did not generate new chemical reactions, while the intensity of fundamental vibration peaks in the spectra tends to vary with respect to the component contents in the blends. The ratio of the integral intensities of polypropylene and cyclic olefin copolymer fundamental vibrations in the Raman spectra were used for the quantitative analysis of PP/COC blends, and the obtained results showed very good agreement with the experimental values. IR spectra, Raman spectra and WAXS patterns of PP/COC blends are useful to track the uniformity of blending and determine the blend composition.


Polypropylene Cyclic olefin copolymer Infrared spectroscopy Raman spectroscopy Wide-angle X-ray scattering 



The authors thank TOPAS Advanced Polymers, Germany, for providing COC and NATPET, Saudi Arabia, for providing PP.


  1. 1.
    Utracki LA, Wilkie CA (2002) Polymer blends handbook, vol 1. Kluwer Academic Publishers, DordrechtGoogle Scholar
  2. 2.
    Paul DR (2012) Polymer blends, vol 1. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Brydson JA (1999) Plastics materials. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Gahleitner M, Paulik C (2017) Polypropylene and other polyolefins. In: Brydson’s plastics materials, 8th edn. Elsevier, Amsterdam, pp 279–309CrossRefGoogle Scholar
  5. 5.
    Chanda M, Roy SK (2006) Plastics technology handbook. CRC Press, Boca RatonGoogle Scholar
  6. 6.
    Pasquini N, Addeo A (2005) Polypropylene handbook, vol 18. Hanser, MunichGoogle Scholar
  7. 7.
    Karger-Kocsis J (2012) Polypropylene: an AZ reference, vol 2. Springer, New YorkGoogle Scholar
  8. 8.
    Lamonte RR, McNally D (2001) Cyclic olefin copolymer. Adv Mater Process 159(3):33–36Google Scholar
  9. 9.
    Fink JK (2010) Handbook of engineering and specialty thermoplastics: polyolefins and styrenics, vol 1. Wiley, New YorkCrossRefGoogle Scholar
  10. 10.
    Pegoretti A, Koları́k J, Fambri L, Penati A (2003) Polypropylene/cycloolefin copolymer blends: effects of fibrous phase structure on tensile mechanical properties. Polymer 44(11):3381–3387CrossRefGoogle Scholar
  11. 11.
    Fambri L, Kolarik J, Pegoretti A, Penati A (2011) Thermal, thermo-mechanical, and dynamic mechanical properties of polypropylene/cycloolefin copolymer blends. J Appl Polym Sci 122(5):3406–3414CrossRefGoogle Scholar
  12. 12.
    Fambri L, Kolarik J, Pasqualini E, Penati A, Pegoretti A (2008) Rheological study on polypropylene/cycloolefin copolymer blends. In: Macromolecular symposia. Wiley Online Library, pp 114–120Google Scholar
  13. 13.
    Ta Vacková, Šlouf M, Nevoralová M, Kaprálková L (2011) Processing-improved properties and morphology of PP/COC blends. J Appl Polym Sci 122(2):1168–1175CrossRefGoogle Scholar
  14. 14.
    Šlouf M, Kolařík J, Fambri L (2004) Phase morphology of PP/COC blends. J Appl Polym Sci 91(1):253–259CrossRefGoogle Scholar
  15. 15.
    Koenig JL (2001) Infrared and Raman spectroscopy of polymers, vol 12. iSmithers Rapra Publishing, ShrewsburyGoogle Scholar
  16. 16.
    Colthup N (2012) Introduction to infrared and Raman spectroscopy. Elsevier, AmsterdamGoogle Scholar
  17. 17.
    Riaz U, Ashraf SM (2014) Characterization of polymer blends with FTIR spectroscopy. In: Thomas S, Grohens Y, Jyotishkumar P (eds) Characterization of polymer blends: miscibility, morphology and interfaces, chap 20. Wiley-VCH Verlag GmbH, pp 625–678. Google Scholar
  18. 18.
    Larkin P (2017) Infrared and Raman spectroscopy: principles and spectral interpretation. Elsevier, AmsterdamGoogle Scholar
  19. 19.
    Vuong S, Chedozeau N, Guilment J, Léger L, Restagno F (2017) Quantitative determination of interfacial copolymer from co-extruded films. Colloids Surf A 529:261–267CrossRefGoogle Scholar
  20. 20.
    Dorset D (1998) X-ray diffraction: a practical approach. Microsc Microanal 4(5):513–515CrossRefGoogle Scholar
  21. 21.
    Roe RJ (2002) X-ray diffraction by polymers. In: Mark HF (ed) Encyclopedia of polymer science and technology, 4th edn. Wiley, pp 1–47.
  22. 22.
    Rohe T, Becker W, Krey A, Nägele H, Kölle S, Eisenreich N (1998) In-line monitoring of polymer extrusion processes by NIR spectroscopy. J Near Infrared Spectrosc 6(1):325–332CrossRefGoogle Scholar
  23. 23.
    Günzler H, Gremlich H-U (2002) IR spectroscopy: an introduction. Wiley-VCH, WeinheimGoogle Scholar
  24. 24.
    Long DA, Long D (1977) Raman spectroscopy, vol 206. McGraw-Hill, New YorkGoogle Scholar
  25. 25.
    De Rosa C, Auriemma F (2013) Crystals and crystallinity in polymers: diffraction analysis of ordered and disordered crystals. Wiley, New YorkCrossRefGoogle Scholar
  26. 26.
    Andreassen E (1999) Infrared and Raman spectroscopy of polypropylene. In: Karger-Kocsis J (ed) Polypropylene: an A-Z reference (Part of the polymer science and technology series, POLS, vol 2). Springer, Berlin, pp 320–328. Google Scholar
  27. 27.
    Luongo J (1960) Infrared study of polypropylene. J Appl Polym Sci 3(9):302–309CrossRefGoogle Scholar
  28. 28.
    Sakai K, Sobue H (1972) Study of structure and thermal properties of polypropylene and chlorinated polypropylene by infrared spectroscopy and differential scanning calorimetry. J Appl Polym Sci 16(10):2657–2670CrossRefGoogle Scholar
  29. 29.
    Cran MJ, Bigger SW (2003) Quantitative analysis of polyethylene blends by fourier transform infrared spectroscopy. Appl Spectrosc 57(8):928–932CrossRefGoogle Scholar
  30. 30.
    Prasad A (1998) A quantitative analysis of low density polyethylene and linear low density polyethylene blends by differential scanning calorimetery and fourier transform infrared spectroscopy methods. Polym Eng Sci 38(10):1716–1728CrossRefGoogle Scholar
  31. 31.
    O’Neil CE, Taylor S, Ratnayake K, Pullagurla S, Singh V, Soper SA (2016) Characterization of activated cyclic olefin copolymer: effects of ethylene/norbornene content on the physiochemical properties. Analyst 141(24):6521–6532CrossRefGoogle Scholar
  32. 32.
    Vieillard J, Hubert-Roux M, Brisset F, Soulignac C, Fioresi F, Mofaddel N, Morin-Grognet S, Afonso C, Le Derf F (2015) Atmospheric solid analysis probe-ion mobility mass spectrometry: an original approach to characterize grafting on cyclic olefin copolymer surfaces. Langmuir 31(48):13138–13144CrossRefGoogle Scholar
  33. 33.
    Yang TC-K, Lin SS-Y, Chuang T-H (2002) Kinetic analysis of the thermal oxidation of metallocene cyclic olefin copolymer (mCOC)/TiO2 composites by FTIR microscopy and thermogravimetry (TG). Polym Degrad Stab 78(3):525–532CrossRefGoogle Scholar
  34. 34.
    Forsyth J, Pereña JM, Benavente R, Pérez E, Tritto I, Boggioni L, Brintzinger H-H (2001) Influence of the polymer microstructure on the thermal properties of cycloolefin copolymer with high norbornene contents. Macromol Chem Phys 202(5):614–620CrossRefGoogle Scholar
  35. 35.
    Schelcher G, Guyon C, Ognier S, Cavadias S, Martinez E, Taniga V, Malaquin L, Tabeling P, Tatoulian M (2014) Cyclic olefin copolymer plasma millireactors. Lab Chip 14(16):3037–3042CrossRefGoogle Scholar
  36. 36.
    Ma K-S, Reza F, Saaem I, Tian J (2009) Versatile surface functionalization of cyclic olefin copolymer (COC) with sputtered SiO2 thin film for potential BioMEMS applications. J Mater Chem 19(42):7914–7920CrossRefGoogle Scholar
  37. 37.
    Socrates G (2001) Infrared and Raman characteristic group frequencies: tables and charts. Wiley, New YorkGoogle Scholar
  38. 38.
    Mayo DW, Miller FA, Hannah RW (2004) Course notes on the interpretation of infrared and Raman spectra. Wiley, New YorkCrossRefGoogle Scholar
  39. 39.
    Kida T, Hiejima Y, Nitta K-H (2016) Molecular orientation behavior of isotactic polypropylene under uniaxial stretching by rheo-Raman spectroscopy. Express Polym Lett 10(8):701–709CrossRefGoogle Scholar
  40. 40.
    Prokhorov KA, Nikolaeva GY, Sagitova EA, Pashinin PP, Nedorezova PM, Klyamkina AN (2016) Regularity modes in Raman spectra of polyolefins: part I. Propylene/olefin copolymer. Vib Spectrosc 85:22–28CrossRefGoogle Scholar
  41. 41.
    Shemouratov YV, Prokhorov K, Sagitova E, Nikolaeva GY, Pashinin P, Lebedev YA, Antipov E (2009) Raman study of polyethylene–polypropylene blends. Laser Phys 19(12):2179CrossRefGoogle Scholar
  42. 42.
    Shemouratov YV, Prokhorov K, Nikolaeva GY, Pashinin P, Kovalchuk A, Klyamkina A, Nedorezova P, Demidenok K, Lebedev YA, Antipov E (2008) Raman study of ethylene–propylene copolymer and polyethylene–polypropylene reactor blends. Laser Phys 18(5):554–567CrossRefGoogle Scholar
  43. 43.
    Nielsen AS, Batchelder D, Pyrz R (2002) Estimation of crystallinity of isotactic polypropylene using Raman spectroscopy. Polymer 43(9):2671–2676CrossRefGoogle Scholar
  44. 44.
    Chalmers J, Edwards H, Lees J, Long D, Mackenzie M, Willis H (1991) Raman spectra of polymorphs of isotactic polypropylene. J Raman Spectrosc 22(11):613–618CrossRefGoogle Scholar
  45. 45.
    Furukawa T, Sato H, Kita Y, Matsukawa K, Yamaguchi H, Ochiai S, Siesler HW, Ozaki Y (2006) Molecular structure, crystallinity and morphology of polyethylene/polypropylene blends studied by Raman mapping, scanning electron microscopy, wide angle X-ray diffraction, and differential scanning calorimetry. Polym J 38(11):1127CrossRefGoogle Scholar
  46. 46.
    Sundell T, Fagerholm H, Crozier H (1996) Isotacticity determination of polypropylene using FT-Raman spectroscopy. Polymer 37(15):3227–3231CrossRefGoogle Scholar
  47. 47.
    Leung KL, Easteal AJ (2010) Characterization of microfibrillar reinforced poly (ethylene naphthalate)/polypropylene composites via polarized Raman and polarized FTIR spectroscopy. J Appl Polym Sci 116(3):1442–1449Google Scholar
  48. 48.
    Goyal S, Thorson MR, Schneider CL, Zhang GG, Gong Y, Kenis PJ (2013) A microfluidic platform for evaporation-based salt screening of pharmaceutical parent compounds. Lab Chip 13(9):1708–1723CrossRefGoogle Scholar
  49. 49.
    De Baez MA, Hendra P, Judkins M (1995) The Raman spectra of oriented isotactic polypropylene. Spectrochim Acta Part A Mol Biomol Spectrosc 51(12):2117–2124CrossRefGoogle Scholar
  50. 50.
    Huth M, Chen C-W, Köhling J, Taffa DH, Wark M, Wagner V (2018) Prediction of delamination state of 2D filler materials in cyclic olefin copolymer for enhanced barrier applications. Compos Struct 202(15):853–859. CrossRefGoogle Scholar
  51. 51.
    Tomba JP (2005) Calculation of polymer blend compositions from vibrational spectra: a simple method. J Polym Sci, Part B: Polym Phys 43(9):1144–1151CrossRefGoogle Scholar
  52. 52.
    Liu M, Guo B, Du M, Chen F, Jia D (2009) Halloysite nanotubes as a novel β-nucleating agent for isotactic polypropylene. Polymer 50(13):3022–3030CrossRefGoogle Scholar
  53. 53.
    Wang B, Huang H-X (2013) Effects of halloysite nanotube orientation on crystallization and thermal stability of polypropylene nanocomposites. Polym Degrad Stab 98(9):1601–1608CrossRefGoogle Scholar
  54. 54.
    Favaro MM, Branciforti MC, Bretas RES (2009) A X-ray study of β-phase and molecular orientation in nucleated and non-nucleated injection molded polypropylene resins. Mater Res 12(4):455–464CrossRefGoogle Scholar
  55. 55.
    Alaburdaitė R, Krylova V (2014) Study of thermo-oxidative chemical pre-treatment of isotactic polypropylene. J Therm Anal Calorim 118(2):1331–1338CrossRefGoogle Scholar
  56. 56.
    Aurrekoetxea J, Sarrionandia M, Urrutibeascoa I, Maspoch ML (2003) Effects of injection moulding induced morphology on the fracture behaviour of virgin and recycled polypropylene. Polymer 44(22):6959–6964CrossRefGoogle Scholar
  57. 57.
    Ponçot M, Martin J, Chaudemanche S, Ferry O, Schenk T, Tinnes J-P, Chapron D, Royaud I, Dahoun A, Bourson P (2015) Complementarities of high energy WAXS and Raman spectroscopy measurements to study the crystalline phase orientation in polypropylene blends during tensile test. Polymer 80:27–37CrossRefGoogle Scholar
  58. 58.
    El Fissi L, Vandormael D, Houssiau L, Francis LA (2016) Surface functionalization of cyclic olefin copolymer (COC) with evaporated TiO2 thin film. Appl Surf Sci 363:670–675CrossRefGoogle Scholar
  59. 59.
    Wu TM, Wu CW (2005) Surface characterization and properties of plasma-modified cyclic olefin copolymer/layered silicate nanocomposites. J Polym Sci, Part B: Polym Phys 43(19):2745–2753CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Aravinthan Gopanna
    • 1
    • 2
  • Ramesh N. Mandapati
    • 1
  • Selvin P. Thomas
    • 2
    • 3
  • Krishnaprasad Rajan
    • 3
  • Murthy Chavali
    • 4
    • 5
    Email author
  1. 1.Department of Chemical Engineering, Vignan’s Foundation for ScienceTechnology and Research UniversityGunturIndia
  2. 2.Advanced Materials Laboratory, Yanbu Research CenterRoyal Commission for Yanbu-Colleges and InstitutesYanbu Industrial CityKingdom of Saudi Arabia
  3. 3.Department of Chemical Engineering Technology, Yanbu Industrial CollegeRoyal Commission Colleges and InstitutesYanbu Industrial CityKingdom of Saudi Arabia
  4. 4.MCETRCTenali, GunturIndia
  5. 5.Shree Velagapudi Ramakrishna Memorial College (SVRMC-PG Studies), NAAC ‘A’ Grade and ISO 9001:2015 Certified, (Autonomous)Nagaram, Guntur DistrictIndia

Personalised recommendations