Advertisement

Imidazolium ionic liquid compatibilizers in melt-blended styrene-butadiene rubber/aramid pulp composites

  • Vinícius Demétrio da Silva
  • Marly Maldaner Jacobi
  • Henri Stephan Schrekker
  • Sandro Campos Amico
Original Research
  • 18 Downloads

Abstract

Carbon black (CB) is commonly used as filler in the rubber industry, although it is potentially polluting and its production demands high energy. It would be beneficial if other fillers could replace CB, even if only partially. Aramid fibers have been used in a range of applications in the rubber industry; however, their relatively inert surface is an obstacle for obtaining composites with enhanced properties. In this work, three ionic liquids were investigated as compatibilizers in the preparation of styrene-butadiene rubber composites with aramid pulp, which were characterized using swelling, hardness, and tensile tests, differential scanning calorimetry, thermogravimetric, and infrared spectroscopy analyses, as well as scanning electron microscopy. The ionic liquid-treated aramid pulp showed higher degree of fibrillation, and the composite with 5 phr of aramid pulp containing 0.5 wt.% of physisorbed ionic liquid showed the highest increment in tensile strength, ca. 42% superior to the IL-free composite, confirming the potential of imidazolium ionic liquids to act as compatibilizers and greatly outperforming related previous work due to differences in the composite preparation techniques.

Notes

Acknowledgements

The authors thank CAPES and CNPq for the financial support. DuPont is kindly acknowledged for the donation of AP.

References

  1. 1.
    Zhang Y, Zhang Q, Liu Q, Cheng H, Frost RL (2014) Thermal stability of styrene butadiene rubber (SBR) composites filled with kaolinite/silica hybrid filler. J Therm Anal Calorim 115(2):1013–1020.  https://doi.org/10.1007/s10973-013-3382-y CrossRefGoogle Scholar
  2. 2.
    Chilan C, Wenxia W, Jianguo Z (2016) The effect of surface functionality of carbon nanotubes on mechanical and tribological behaviours of carbon fibre-filled styrene-butadiene rubber composite. J Thermoplast Compos Mater 29(9):1167–1175.  https://doi.org/10.1177/0892705714556834 CrossRefGoogle Scholar
  3. 3.
    Zhong B, Dong H, Lin J et al (2017) Preparation of halloysite nanotubes/silica hybrid supported vulcanization accelerator for enhancing interfacial and mechanical strength of rubber composites. Ind Eng Chem Res.  https://doi.org/10.1021/acs.iecr.7b02250 CrossRefGoogle Scholar
  4. 4.
    Nillawong M, Sae-oui P, Suchiva K, Sirisinha C (2016) Properties of Sbr filled with carbon black and aramid pulp hybrid filler: comparison between predispersed aramid pulp and conventional aramid pulp. Rubber Chem Technol 89(4):640–652.  https://doi.org/10.5254/rct.16.83803 CrossRefGoogle Scholar
  5. 5.
    Raza MA, Ashraf MA, Westwood AVK et al (2016) Maleated high oleic sunflower oil-treated cellulose fiber-based styrene butadiene rubber composites. Polym Polym Compos 37(4):1113–1121.  https://doi.org/10.1002/pc.23273 CrossRefGoogle Scholar
  6. 6.
    Subramaniam K, Das A, Stöckelhuber KW, Heinrich G (2013) Elastomer composites based on carbon nanotubes and ionic liquid. Rubber Chem Technol 86(3):367–400.  https://doi.org/10.5254/rct.13.86984 CrossRefGoogle Scholar
  7. 7.
    Mao Y, Li S, Fang RL, Ploehn HJ (2017) Magadiite/styrene-butadiene rubber composites for tire tread applications: effects of varying layer spacing and alternate inorganic fillers. J Appl Polym Sci 134(18):1–13.  https://doi.org/10.1002/app.44764 CrossRefGoogle Scholar
  8. 8.
    Gopi JA, Patel SK, Tripathy DK, Chandra AK (2016) Development of cooler running PCR tire tread using SBR-ENR-nano clay composite. Int J Plast Technol 20(2):345–363.  https://doi.org/10.1007/s12588-016-9159-y CrossRefGoogle Scholar
  9. 9.
    Wennekes WB, Datta RN, Noordermeer JWM (2008) Fiber adhesion to rubber compounds. Rubber Chem Technol 81(3):523–540.  https://doi.org/10.5254/1.3548218 CrossRefGoogle Scholar
  10. 10.
    Wang L, Shi Y, Sa R et al (2016) Surface modification of aramid fibers by catechol/polyamine codeposition followed by silane grafting for enhanced interfacial adhesion to rubber matrix. Ind Eng Chem Res 55(49):12547–12556.  https://doi.org/10.1021/acs.iecr.6b03177 CrossRefGoogle Scholar
  11. 11.
    Dewilde S, Dehaen W, Binnemans K (2016) Ionic liquids as solvents for PPTA oligomers. Green Chem 18(6):1639–1652.  https://doi.org/10.1039/C5GC02185E CrossRefGoogle Scholar
  12. 12.
    Wang CX, Du M, Lv JC et al (2015) Surface modification of aramid fiber by plasma induced vapor phase graft polymerization of acrylic acid. I. Influence of plasma conditions. Appl Surf Sci 349:333–342.  https://doi.org/10.1016/j.apsusc.2015.05.036 CrossRefGoogle Scholar
  13. 13.
    Sun Y, Liang Q, Chi H et al (2014) The application of gas plasma technologies in surface modification of aramid fiber. Fibers Polym 15(1):1–7.  https://doi.org/10.1007/s12221-014-0001-x CrossRefGoogle Scholar
  14. 14.
    Li S, Han K, Rong H, Li X, Yu M (2014) Surface modification of aramid fibers via ammonia–plasma treatment. J Appl Polym Sci 131(10):1–6.  https://doi.org/10.1002/app.40250 CrossRefGoogle Scholar
  15. 15.
    Zhao J (2013) Effect of surface treatment on the structure and properties of para-aramid fibers by phosphoric acid. Fibers Polym 14(1):59–64.  https://doi.org/10.1007/s12221-013-0059-x CrossRefGoogle Scholar
  16. 16.
    Lin JS (2002) Effect of surface modification by bromination and metalation on Kevlar fibre-epoxy adhesion. Eur Polym J 38(1):79–86.  https://doi.org/10.1016/S0014-3057(01)00176-8 CrossRefGoogle Scholar
  17. 17.
    da Silva VD, Jacobi MM, Schrekker HS, Amico SC (2018) Aramid pulp with physisorbed imidazolium ionic liquids for solvent-casted enhanced styrene-butadiene rubber composites. J Appl Polym Sci. 135(36):46693.  https://doi.org/10.1002/app.46693 CrossRefGoogle Scholar
  18. 18.
    Schrekker HS, Silva DO, Gelesky MA et al (2008) Preparation, cation–anion interactions and physicochemical properties of ether-functionalized imidazolium ionic liquids. J Braz Chem Soc 19(3):426–433.  https://doi.org/10.1590/S0103-50532008000300009 CrossRefGoogle Scholar
  19. 19.
    Villar-Rodil S, Paredes JI, Martínez-Alonso A, Tascón JMD (2001) Atomic force microscopy and infrared spectroscopy studies of the thermal degradation of nomex aramid fibers. Chem Mater 13(11):4297–4304.  https://doi.org/10.1021/cm001219f CrossRefGoogle Scholar
  20. 20.
    Wu J, Cheng XH (2006) Effect of surface treatment on the mechanical and tribological performance of Kevlar pulp reinforced epoxy composites. Tribol Lett 24(3):195–199.  https://doi.org/10.1007/s11249-006-9138-0 CrossRefGoogle Scholar
  21. 21.
    Brandt A, Ray MJ, To TQ, Leak DJ, Murphy RJ, Welton T (2011) Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid–water mixtures. Green Chem 13(9):2489–2499.  https://doi.org/10.1039/c1gc15374a CrossRefGoogle Scholar
  22. 22.
    Macmillan AC, McIntire TM, Epstein SA, Nizkorodov SA (2014) Effect of alkyl chain length on hygroscopicity of nanoparticles and thin films of imidazolium-based ionic liquids. J Phys Chem C 118(50):29458–29466.  https://doi.org/10.1021/jp503049j CrossRefGoogle Scholar
  23. 23.
    Kraus G (1963) Swelling of filler-reinforced vulcanizates. J Appl Polym Sci 7:861–871CrossRefGoogle Scholar
  24. 24.
    Narimissa E, Gupta RK, Kao N, Choi HJ, Bhattacharya SN (2015) The comparison between the effects of solvent casting and melt intercalation mixing processes on different characteristics of polylactide–nanographite platelets composites. Polym Eng Sci 55(7):1560–1570.  https://doi.org/10.1002/pen CrossRefGoogle Scholar
  25. 25.
    Chatzi EG, Koenig JL (1987) Morphology and structure of Kevlar fibers: a review. Polym Plast Technol Eng 26(3–4):229–270.  https://doi.org/10.1080/03602558708071938 CrossRefGoogle Scholar
  26. 26.
    Hintze C, Shirazi M, Wiessner S, Talma AG, Heinrich G, Noordermeer JWM (2013) Influence of fiber type and coating on the composite properties of EPDM compounds reinforced with short aramid fibers. Rubber Chem Technol 86(4):579–590.  https://doi.org/10.5254/rct.13.87977 CrossRefGoogle Scholar
  27. 27.
    Hunter BA, Nawakowski AC, Barnhart RR, Campbell EM, Hansen EB (1960) Important stability factors for styrene-butadiene rubber. Rubber Chem Technol 33(2):510–527.  https://doi.org/10.5254/1.3542170 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.PPGE3M, School of EngineeringUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Laboratory of Technological Processes and Catalysis, Institute of ChemistryUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  3. 3.Materials Science Graduate ProgramUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations