Advertisement

Polymer Bulletin

, Volume 76, Issue 6, pp 3175–3194 | Cite as

Conducting hydrogel based on chitosan, polypyrrole and magnetite nanoparticles: a broadband dielectric spectroscopy study

  • M. E. Abd El-AzizEmail author
  • A. M. Youssef
  • S. Kamel
  • G. Turky
Original Paper

Abstract

The conducting polymer nanocomposites and bionanocomposites attracted greatly significant attention recently owing to their usage in diverse fields, particularly in electrical storage devices. Conducting hydrogel bionanocomposite based on magnetite nanoparticles (Fe3O4-NPs) was synthesized from chitosan/polyacrylic acid/polypyrrole. Furthermore, different ratios of Fe3O4-NPs were added to the synthesized biocomposites to improve the thermal and the electrical conductivity properties of the conducting bionanocomposites hydrogel. In addition, morphology and swelling percentage of the fabricated bionanocomposites hydrogel were investigated. The influence of the conductive polymer and the magnetite nanoparticles on enhancement the conductivity of the bionanocomposites is the main objective of this work. The broadband dielectric spectroscopy was employed to study the electrical and dielectric properties of the investigated samples. The addition of PPy increased the conductivity of the hydrogel by about four orders of magnitude. Furthermore, the effect of adding Fe3O4-NPs at ratios 1–5 wt% was at the satisfactory level.

Keywords

Hydrogel Conductive polymers Magnetite nanoparticles Dielectric properties 

Notes

Acknowledgements

Authors gratefully acknowledge the National Research Centre (Projects Nos. 11050102 and 11050105) for their financial support of this research.

References

  1. 1.
    Siddhanta SK, Gangopadhyay R (2005) Conducting polymer gel: formation of a novel semi-IPN from polyaniline and crosslinked poly (2-acrylamido-2-methyl propanesulphonicacid). Polymer 46:2993–3000.  https://doi.org/10.1016/j.polymer.2005.01.084 CrossRefGoogle Scholar
  2. 2.
    Huang H, Wu J, Lin X, Li L, Shang S, Yuen M, Yan G (2013) Self-assembly of polypyrrole/chitosan composite hydrogels. Carbohydr Polym 95:72–76.  https://doi.org/10.1016/j.carbpol.2013.02.071 CrossRefGoogle Scholar
  3. 3.
    Abu-Thabit N, Umar Y (2014) Electrically conductive polyacrylamide–polyaniline superabsorbing polymer hydrogels. In: 1st international electronic conference on materials, Montreal, Canada, 26 May–10 JuneGoogle Scholar
  4. 4.
    Iwakura C, Murakami H, Nohara N, Furukawa N, Inoue H (2005) Charge–discharge characteristics of nickel/zinc battery with polymer hydrogel electrolyte. J Power Sources 152:291–294.  https://doi.org/10.1149/1.1622405 CrossRefGoogle Scholar
  5. 5.
    Kato T, Okazaki A, Hayase S (2006) Latent gel electrolyte precursors for quasisolid dye sensitized solar cells: the comparison of nano-particle cross-linkers with polymer cross-linkers. J Photochem Photobiol A Chem 179:42–48.  https://doi.org/10.1016/j.jphotochem.2005.07.010 CrossRefGoogle Scholar
  6. 6.
    Wu JH, Lan Z, Wang DB, Hao SC, Lin JM, Yin S (2006) Gel polymer electrolyte based on poly(acrylonitrile-co-styrene) and a novel organic iodide salt for quasi-solid dye-sensitized solar cell. Electrochim Acta 51:4243–4249.  https://doi.org/10.1016/j.electacta.2005.11.047 CrossRefGoogle Scholar
  7. 7.
    Sharma K, Kaith BS, Kalia S, Kumar V, Swart HC (2015) Gum ghatti-based biodegradable and conductive carriers for colon-specific drug delivery. Colloid Polym Sci 293:1181–1190.  https://doi.org/10.1007/s00396-015-3505-z CrossRefGoogle Scholar
  8. 8.
    Kim JY, Kim TH, Kim DY, Park NG, Ahn KD (2008) Novel thixotropic gel electrolytes based on dicationic bis-imidazolium salts for quasi-solid-state dye-sensitized solar cells. J Power Sources 175:692–697.  https://doi.org/10.1016/j.jpowsour.2007.08.085 CrossRefGoogle Scholar
  9. 9.
    Tang Q, Wu J, Sun H, Lin J, Fan S, Hu D (2008) Polyaniline/polyacrylamide conducting composite hydrogel with a porous structure. Carbohydr Polym 74:215–219.  https://doi.org/10.1016/j.carbpol.2008.02.008 CrossRefGoogle Scholar
  10. 10.
    Lira LM, Córdoba de Torresi SI (2005) Conducting polymer–hydrogel composites for electrochemical release devices: synthesis and characterization of semi-interpenetrating polyaniline–polyacrylamide networks. Electrochem Commun 7:717–723.  https://doi.org/10.1016/j.elecom.2005.04.027 CrossRefGoogle Scholar
  11. 11.
    Youssef AM, Mohamed SA, Abdel-Aziz MS, Abdel-Aziz ME, Turky G, Kamel S (2016) Biological studies and electrical conductivity of paper sheet based on PANI/PS/Ag-NPs nanocomposite. Carbohydr Polym 147:333–343.  https://doi.org/10.1016/j.carbpol.2016.03.085 CrossRefGoogle Scholar
  12. 12.
    Youssef AM, El-Nahrawy AM, Abou Hammad AB (2017) Sol–gel synthesis and characterizations of hybrid chitosan-PEG/calcium silicate nanocomposite modified with ZnO-NPs and (E102) for optical and antibacterial applications. Int J Biol Macromol 97:561–567.  https://doi.org/10.1016/j.ijbiomac.2017.01.059 CrossRefGoogle Scholar
  13. 13.
    Thanpitcha T, Sirivat A, Jamieson AM, Rujiravanit R (2006) Preparation and characterization of polyaniline/chitosan blend film. Carbohydr Polym 64:560–568.  https://doi.org/10.1016/j.carbpol.2005.11.026 CrossRefGoogle Scholar
  14. 14.
    Corradini E, de Moura MR, Mattoso LC (2010) A preliminary study of the incorparation of NPK fertilizer into chitosan nanoparticles. Express Polym Lett 4:509–515.  https://doi.org/10.3144/expresspolymlett.2010.64 CrossRefGoogle Scholar
  15. 15.
    Youssef AM, EL-Sayed SM, EL-Sayed HS, Salama HH, Assem FM, Abd El-Salam MH (2018) Novel bionanocomposite materials used for packaging skimmed milk acid coagulated cheese (Karish). Int J Biol Macromol 115:1002–1011.  https://doi.org/10.1016/j.ijbiomac.2018.04.165 CrossRefGoogle Scholar
  16. 16.
    Youssef AM, El-Sayed SM (2018) Bionanocomposites materials for food packaging applications: concepts and future outlook. Carbohydr Polym 193:19–27.  https://doi.org/10.1016/j.carbpol.2018.03.088 CrossRefGoogle Scholar
  17. 17.
    Tianhong D, Masamitsu T, Ying-Ying H, Michael RH (2011) Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. J Expert Rev Anti-infect Ther 9(7):857–879.  https://doi.org/10.1586/eri.11.59 CrossRefGoogle Scholar
  18. 18.
    Won W, Feng X, Lawless D (2002) Pervaporation with chitosan membranes: separation of dimethyl carbonate/methanol/water mixtures. J Membr Sci 209:493–508.  https://doi.org/10.1016/S0376-7388(02)00367-8 CrossRefGoogle Scholar
  19. 19.
    Abdel Rehim MH, Youssef AM, Al-Said H, Turky G, Aboaly M (2016) Polyaniline and titaniate/CTAB nanowires layer-by-layer conductive plastic electrode for flexible electronic devices applications. RSC Adv 6:94556.  https://doi.org/10.1039/C6RA18748J CrossRefGoogle Scholar
  20. 20.
    Kiraly A, Ronkay F (2015) Temperature dependence of electrical properties in conductive polymer composites. Polym Test 43:154–162.  https://doi.org/10.1016/j.polymertesting.2015.03.011 CrossRefGoogle Scholar
  21. 21.
    Ateh DD, Navsaria HA, Vadgama P (2006) Polypyrrole-based conducting polymers and interactions with biological tissues. J R Soc Interface 3:741–752.  https://doi.org/10.1098/rsif.2006.0141 CrossRefGoogle Scholar
  22. 22.
    Skotheim T, Elsenbaumer R, Reynolds J (1997) Hand-book of conducting polymers. Marcel Dekker, New YorkGoogle Scholar
  23. 23.
    Chougule M, Pawara S, Godse P, Mulik R, Sen S, Patil V (2011) Synthesis and characterization of polypyrrole (PPy) Thin films. Soft Nanosci Lett 1:6–10.  https://doi.org/10.4236/snl.2011.11002 CrossRefGoogle Scholar
  24. 24.
    Iida H, Takayanagi K, Nakanishi T, Osaka T (2007) Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. J Colloid Interface Sci 314:274–280.  https://doi.org/10.1016/j.jcis.2007.05.047 CrossRefGoogle Scholar
  25. 25.
    Yang J, Park S, Yoon H, Huh Y, Haam S (2006) Preparation of poly-carpolactone nanoparticles containing magnetite for magnetic drug carrier. Int J Pharm 324:185–190.  https://doi.org/10.1016/j.ijpharm.2006.06.029 CrossRefGoogle Scholar
  26. 26.
    Zhou L, Yuan J, Yuan W, Sui X, Wu S, Li Z, Shen D (2009) Synthesis, characterization, and controllable drug release of pH-sensitive hybrid magnetic nanoparticles. J Magn Mater 321:2799–2804.  https://doi.org/10.1016/j.jmmm.2009.04.020 CrossRefGoogle Scholar
  27. 27.
    Hu F, Neoh K, Kang E (2006) Synthesis and in vitro anti-cancer evaluation of tamoxifen-loaded magnetite/PLLA composite nanoparticles. Biomaterials 27:5725–5733.  https://doi.org/10.1016/j.biomaterials.2006.07.014 CrossRefGoogle Scholar
  28. 28.
    Ma Z, Liu H (2007) Synthesis and surface modification of magnetic particles for application. China Particuology 5:1–10.  https://doi.org/10.1016/j.cpart.2006.11.001 CrossRefGoogle Scholar
  29. 29.
    Brijmohan S, Shaw M (2007) Magnetic ion-exchange nanoparticles and their application in proton exchange membranes. J Membr Sci 303:64–71.  https://doi.org/10.1016/j.memsci.2007.06.066 CrossRefGoogle Scholar
  30. 30.
    Luo YL, Fan LH, Xu F, Chen YS, Zhang CH, Wei QB (2010) Synthesis and characterization of Fe3O4/PPy/P(MAA-co-AAm) trilayered composite microspheres with electric, magnetic and pH response characteristic CS. Mater Chem Phys 120:590–597CrossRefGoogle Scholar
  31. 31.
    Kumar R, Inbaraj B, Chen B (2010) Surface modification of superparamagnetic iron nanoparticles with calcium salt of poly (glutamic acid) as coating material. Mater Res Bull 45:1603–1607CrossRefGoogle Scholar
  32. 32.
    Moniruzzama M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205CrossRefGoogle Scholar
  33. 33.
    Moussa MA, Abdel Rehim MH, Khairy SA, Soliman MA, Ghoneim AM, Turky GM (2015) Electrical investigations of polyaniline/sulfonated polystyrene composites using broadband dielectric spectroscopy. Synth Met 209:34–40CrossRefGoogle Scholar
  34. 34.
    Dutta P, Biswas S, Ghosh M, De S, Chatterjee S (2001) The dc and ac conductivity of polyaniline–polyvinyl alcohol blends. Synth Met 122:455–461CrossRefGoogle Scholar
  35. 35.
    Yakut S, Ulutas HK, Melnichuk I, Choukourov A, Biederman H, Dege D (2016) Dielectric properties of plasma polymerized poly(ethylene oxide) thin films. Thin Solid Films 616:279–286CrossRefGoogle Scholar
  36. 36.
    Turky G, Shaaban SS, Schöenhals A (2009) Broadband dielectric spectroscopy on the molecular dynamics in different generations of hyperbranched polyester. J Appl Polym Sci 113:2477–2484.  https://doi.org/10.1002/app.30046 CrossRefGoogle Scholar
  37. 37.
    Omara S, Abdel Rehim M, Ghoneim A, Madkour S, Thünemann AF, Turky G, Schonhals A (2015) Structure–property relationships of hyperbranched polymer/kaolinite nanocomposites. Macromolecules 48:6562–6573.  https://doi.org/10.1021/acs.macromol.5b01693 CrossRefGoogle Scholar
  38. 38.
    Sari B, Gok A, Sahin D (2006) Synthesis and properties of conducting polypyrrole, polyalkylanilines, and composites of polypyrrole and poly(2-ethylaniline). J Appl Polym Sci 101:241–249.  https://doi.org/10.1002/app.23247 CrossRefGoogle Scholar
  39. 39.
    El-Sabbagh SH, Ahmed NM, Turky GM, Selim MM (2017) Rubber nano-composites with new core-shell metal oxides as nano-fillers. In: Thomas S, Maria HJ (eds) Progress in rubber nanocomposites, a volume in Woodhead Publishing Series in Composites Science and Engineering. Elsevier, Amsterdam, pp 249–283Google Scholar
  40. 40.
    Doh GH, Lee SY, Kang IA, Kong YT (2005) Thermal behavior of liquefied wood polymer composites (LWPC). Compos Struct 68:103–108CrossRefGoogle Scholar
  41. 41.
    Omara S, Turky G, Ghoneim A, Thünemann AF, Abdel Rehim M, Schonhals A (2017) Hyperbranched poly(amidoamine)/kaolinite nanocomposites: structure and charge carrier dynamics. Polymer 121:64–74.  https://doi.org/10.1016/j.polymer.2017.06.017 CrossRefGoogle Scholar
  42. 42.
    Zielniok D, Eckert H, Cramer C (2008) Direct correlation between nonrandom ion hopping and network structure in ion-conducting borophosphate glasses. Phys Rev Lett 100:035901CrossRefGoogle Scholar
  43. 43.
    Kremer F (2002) Schönhals a broadband dielectric spectroscopy. Springer, BerlinGoogle Scholar
  44. 44.
    Staesche H, Roling B (2010) Nonlinear conductivity spectra of ionically conducting glasses and glass ceramics: analysis of spectral shape and scaling properties. Phys Rev B 82:134202.  https://doi.org/10.1103/PhysRevB.82.134202 CrossRefGoogle Scholar
  45. 45.
    Biswas D, Kundu R, Das AS, Roy M, Roy D, Singh LS, Bhattacharya S (2018) Conductivity spectra of silver-phosphate glass nanocomposites: frequency and temperature dependency. J Non-Cryst Solids 495:47–53.  https://doi.org/10.1016/j.jnoncrysol.2018.05.006 CrossRefGoogle Scholar
  46. 46.
    Dhankhar S, Kundu RS, Dult M, Murugave S, Punia R, Kishore N (2016) Electrical conductivity and modulus formulation in zinc modified bismuth boro-tellurite glasses. Indian J Phys 90:1033–1040.  https://doi.org/10.1007/s12648-016-0850-9 CrossRefGoogle Scholar
  47. 47.
    Bobritskaya EI, Castro RA, Temnov DE (2013) Thermoactivation and dielectric spectroscopy of chitosan films. Phys Solid State 55:225–228.  https://doi.org/10.1134/S1063783413010095 CrossRefGoogle Scholar
  48. 48.
    Smotrina TV, Smirnov AK (2008) Effect of water on relaxation processes in biopolymer sorbents. Colloid J 70:337–340.  https://doi.org/10.1134/S1061933X08030113 CrossRefGoogle Scholar
  49. 49.
    Bobritskaya EI, Castro RA, Gorokhovatsky YA, Temnov DE (2013) Dielectric relaxation of chitosan films. Adv Mater Res 685:336–339.  https://doi.org/10.4028/www.scientific.net/AMR.685.336 CrossRefGoogle Scholar
  50. 50.
    Angell CA (1997) Entropy and fragility in supercooling liquids. J Res Natl Inst Stand Technol 102:171–185.  https://doi.org/10.6028/jres.102.013 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Polymers and Pigments DepartmentNational Research CentreGizaEgypt
  2. 2.Packaging Materials DepartmentNational Research CentreGizaEgypt
  3. 3.Cellulose and Paper DepartmentNational Research CentreGizaEgypt
  4. 4.Microwave Physics and Dielectrics DepartmentNational Research Centre (NRC)GizaEgypt

Personalised recommendations