Polymer Bulletin

, Volume 76, Issue 6, pp 3113–3125 | Cite as

Synthesis and enhanced microwave absorption properties of urchin-like polyaniline/Ni0.4Zn0.4Co0.2Fe2O4 composites

  • Yiming Lei
  • Zhengjun YaoEmail author
  • Haiyan Lin
  • Jintang ZhouEmail author
  • Peijiang liu
  • Tongbaihui Qi
  • Yong Ning
  • Cheng Shen
Original Paper


A novel polyaniline/Ni0.4Zn0.4Co0.2Fe2O4 (PANI/NZCF) composite was synthesized by in situ polymerization of aniline in the presence of NZCF. The studies of structural, morphological and surface chemical bonding states were performed by X-ray diffraction, scanning electron microscopy and Fourier transform-infrared spectrometry, respectively. It was found that greater reflection loss and wider absorption bandwidths were possible by adjusting the mass ratio of NZCF to PANI on account of electromagnetic loss and impedance matching. The highest reflection loss (RL) was − 40 dB at the frequency 15.8 GHz for the PANI/NZCF composite when the effective absorption frequency at which RL < − 10 dB was in the range of 13.5–18 GHz with an absorber thickness of 1.7 mm at the mass ratio of 2:1. These effects are due to the urchin-like structure when compared to traditional encapsulation structures. Therefore, the above findings show that the PANI/NZCF composite with negligible thickness and strong absorption properties has great potential in the application of electromagnetic shielding and microwave absorbing.


Composites Ferrites Polyaniline Dielectric property Microwave absorption property 



This work was supported by the National Natural Science Foundation of China (51672129, 51702158 and 11502110), Natural Science Foundation of Jiangsu Province of China (BK20150737), the Fundamental Research Funds for the Central Universities (NS2017036) and Hong Kong Scholars Program. The authors thank Dr. Azhar Ali Haidry, foreign expert in functional materials and associate professor in our college, for his valuable suggestions and revision to improve the English of the manuscript. The authors also thank Dr. Shasha Zhang for her suggestion.


  1. 1.
    He Q, Yuan T, Zhang X, Yan X, Guo J, Ding D, Khan MA, Young DP, Khasanov A, Luo Z, Liu J, Shen TD, Liu X, Wei S, Guo Z (2014) Electromagnetic field absorbing polypropylene nanocomposites with tuned permittivity and permeability by nanoiron and carbon nanotubes. J Phys Chem C 118:24784–24796. CrossRefGoogle Scholar
  2. 2.
    Song Q, Zhang ZJ (2012) Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core-shell architecture. J Am Chem Soc 134:10182–10190. CrossRefGoogle Scholar
  3. 3.
    Sarkar D, Bhattacharya A, Nandy P, Das S (2014) Enhanced broadband microwave reflection loss of carbon nanotube ensheathed Ni–Zn–Co-ferrite magnetic nanoparticles. Mater Lett 120:259–262. CrossRefGoogle Scholar
  4. 4.
    Xie J, Han M, Chen L, Kuang R, Deng L (2007) Microwave-absorbing properties of NiCoZn spinel ferrites. J Magn Magn Mater 314:37–42. CrossRefGoogle Scholar
  5. 5.
    Srinivas C, Meena SS, Tirupanyam BV, Sastry DL, Yusuf SM (2013) Structural and mossbauer spectroscopic studies of heat-treated NixZn1−xFe2O4 ferrite nanoparticles. In: Chauhan AK, Murli C, Gadkari SC (eds) AIP conference proceedings, vol 1512, pp 338–339.
  6. 6.
    Tang J, Ma L, Tian N, Gan M, Xu F, Zeng J, Tu Y (2014) Synthesis and electromagnetic properties of PANI/PVP/CIP core-shell composites. Mater Sci Eng B-Adv 186:26–32. CrossRefGoogle Scholar
  7. 7.
    Kuo-Hui W, Fu-Chu Y (2007) Synthesis and characterization of organically modified silicate/NiZn ferrite hybrid coatings. Acta Mater 55:507–515. CrossRefGoogle Scholar
  8. 8.
    Bueno AR, Gregori ML, Nobrega MCS (2007) Effect of Mn substitution on the microstructure and magnetic properties of Ni0.50-xZn0.50-xMn2xFe2O4 ferrite prepared by the citrate-nitrate precursor method. Mater Chem Phys 105:229–233. CrossRefGoogle Scholar
  9. 9.
    Liu P, Li L, Yao Z, Zhou J, Du M, Yao T (2016) Synthesis and excellent microwave absorption property of polyaniline nanorods coated Li0.435Zn0.195Fe2.37O4 nanocomposites. J Mater Sci-Mater El 27:7776–7787. CrossRefGoogle Scholar
  10. 10.
    Madhu BJ, Gurusiddesh M, Kiran T, Shruthi B, Jayanna HS (2016) Structural, dielectric, ac conductivity and electromagnetic shielding properties of polyaniline/Ni0.5Zn0.5Fe2O4 composites. J Mater Sci-Mater El 27:7760–7766. CrossRefGoogle Scholar
  11. 11.
    Liu P, Yao Z, Zhou J, Yang Z, Kong LB (2016) Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J Mater Chem C 4:9738–9749. CrossRefGoogle Scholar
  12. 12.
    Du M, Yao Z, Zhou J, Liu P, Yao T, Yao R (2017) Design of efficient microwave absorbers based on multi-layered polyaniline nanofibers and polyaniline nanofibers/Li0.35Zn0.3Fe2.35O4 nanocomposite. Synth Met 223:49–57. CrossRefGoogle Scholar
  13. 13.
    Basavaraja C, Kim WJ, Kim DG, Huh DS (2012) Microwave absorption studies of polyaniline nanocomposites encapsulating gold nanoparticles on the surface of reduced graphene oxide in the presence of 2-naphthalene sulfonic acid. Colloid Polym Sci 290:829–838. CrossRefGoogle Scholar
  14. 14.
    Stejskal J, Sapurina I, Prokes J, Zemek J (1999) In-situ polymerized polyaniline films. Synth Met 105:195–202. CrossRefGoogle Scholar
  15. 15.
    Li GJ, Yan SF, Zhou EL, Chen YM (2006) Preparation of magnetic and conductive NiZn ferrite-polyaniline nanocomposites with core-shell structure. Colloid Surf A 276:40–44. CrossRefGoogle Scholar
  16. 16.
    Mi H, Zhang X, Xu Y, Xiao F (2010) Synthesis, characterization and electrochemical behavior of polypyrrole/carbon nanotube composites using organometallic-functionalized carbon nanotubes. Appl Surf Sci 256:2284–2288. CrossRefGoogle Scholar
  17. 17.
    Konicki W, Sibera D, Mijowska E, Lendzion-Bielun Z, Narkiewicz U (2013) Equilibrium and kinetic studies on acid dye Acid Red 88 adsorption by magnetic ZnFe2O4 spinel ferrite nanoparticles. J Colloid Interf Sci 398:152–160. CrossRefGoogle Scholar
  18. 18.
    Liv P, Yao Z, Zhou J (2015) Preparation of reduced graphene oxide/Ni0.4Zn0.4Co0.2Fe2O4 nanocomposites and their excellent microwave absorption properties. Ceram Int 41:13409–13416. CrossRefGoogle Scholar
  19. 19.
    Ting T, Wu K (2010) Synthesis, characterization of polyaniline/BaFe12O19 composites with microwave-absorbing properties. J Magn Magn Mater 322:2160–2166. CrossRefGoogle Scholar
  20. 20.
    Sozeri H, Kurtan U, Topkaya R, Baykal A, Toprak MS (2013) Polyaniline (PANI)-Co0.5Mn0.5Fe2O4 nanocomposite: synthesis, characterization and magnetic properties evaluation. Ceram Int 39:5137–5143. CrossRefGoogle Scholar
  21. 21.
    Wang C, Shen Y, Wang X, Zhang H, Xie A (2013) Synthesis of novel NiZn-ferrite/Polyaniline nanocomposites and their microwave absorption properties. Mat Sci Semicon Proc 16:77–82. CrossRefGoogle Scholar
  22. 22.
    Ben Ghzaiel T, Dhaoui W, Schoenstein F, Talbot P, Mazaleyrat F (2017) Substitution effect of Me=Al, Bi, Cr and Mn to the microwave properties of polyaniline/BaMeFe11O19 for absorbing electromagnetic waves. J Alloy Compd 692:774–786. CrossRefGoogle Scholar
  23. 23.
    Khairy M (2014) Polyaniline-Zn0.2Mn0.8 Fe2O4 ferrite core-shell composite: preparation, characterization and properties. J Alloy Compd 608:283–291. CrossRefGoogle Scholar
  24. 24.
    Du Y, Liu W, Qiang R, Wang Y, Han X, Ma J, Xu P (2014) Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl Mater Inter 6:12997–13006. CrossRefGoogle Scholar
  25. 25.
    Wang Y, Du Y, Xu P, Qiang R, Han X (2017) Recent advances in conjugated polymer-based microwave absorbing materials. Polymers-Basel. Google Scholar
  26. 26.
    Yang H, Ye T, Lin Y, Liu M (2015) Exchange coupling behavior and microwave absorbing property of the hard/soft (BaFe12O19/Y3Fe5O12) ferrites based on polyaniline. Synth Met 210:245–250. CrossRefGoogle Scholar
  27. 27.
    Wang J, Or SW, Leung CM (2015) Effect of shell permutation on electromagnetic properties of ZnFeO4/(PANI, SiO2) core/double-shell nanostructured disks. J Appl Phys. Google Scholar
  28. 28.
    Shi X, Cao M, Yuan J, Fang X (2009) Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability. Appl Phys Lett. Google Scholar
  29. 29.
    Kim SS, Kim ST, Yoon YC, Lee KS (2005) Magnetic, dielectric, and microwave absorbing properties of iron particles dispersed in rubber matrix in gigahertz frequencies. J Appl Phys. Google Scholar
  30. 30.
    Zhang XF, Guan PF, Dong XL (2010) Multidielectric polarizations in the core/shell Co/graphite nanoparticles. Appl Phys Lett. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yiming Lei
    • 1
    • 2
  • Zhengjun Yao
    • 1
    • 2
    Email author
  • Haiyan Lin
    • 3
  • Jintang Zhou
    • 1
    • 2
    Email author
  • Peijiang liu
    • 1
    • 2
  • Tongbaihui Qi
    • 1
    • 2
  • Yong Ning
    • 1
    • 2
  • Cheng Shen
    • 4
    • 5
  1. 1.College of Materials and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Key Laboratory of Material Preparation and Protection for Harsh EnvironmentNanjing University of Aeronautics and Astronautics, Ministry of Industry and Information TechnologyNanjingChina
  3. 3.Research Institute of Aerospace Special Materials and TechnologyBeijingChina
  4. 4.College of Energy and Power EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina
  5. 5.Jiangsu Province Key Laboratory of Aerospace Power SystemNanjingChina

Personalised recommendations