Polymer Bulletin

, Volume 76, Issue 6, pp 2851–2866 | Cite as

Morphology and properties in the binary blends of polypropylene and propylene–ethylene random copolymers

  • Yi Li
  • Yang Li
  • Changyu HanEmail author
  • Yancun YuEmail author
  • Liguang Xiao
Original Paper


Propylene-based random copolymers copolymerized by propylene and ethylene (PEC) with low degree of crystallinity were used for the modification of isotactic polypropylene (PP) in this work. The phase morphology, miscibility, mechanical properties and rheological properties of the PP/PEC blends were systematically investigated. Dynamic mechanical analysis (DMA) and differential scanning calorimeter (DSC) results verified that the blends were partial miscibility. This may be due to the fact that the PP segments from PEC chains are incorporated into crystal lattice of neat PP, and they together act as a matrix of the PP/PEC blends. The rest of the PEC chains serve as the dispersed phase. The segments from the PEC chains incorporated into pure PP play the role of compatibilizer between the PP matrix and the dispersed phase, which make the dispersed phase to be uniformly dispersed in the PP matrix, resulting in an increase in impact strength from 5 kJ/m2 of neat PP to 40 kJ/m2 of blend with 20 wt% PEC. In addition, the viscosity and modulus of the blends were lower than that of pure PP due to the dilution of PEC in the molten state.



This work is supported by program of Cooperation of Hubei Province and Chinese Academy of Sciences, Jilin Province Science and Technology Agency (20160204030GX), program of Changchun Municipal Scientific and Technologic Development (16SS16) and Innovation team project of Beijing Institute of Science and Technology (IG201703N).


  1. 1.
    Lezak E, Bartczak Z, Galeski A (2008) Spherulitic crystallization in polypropylene. Polymer 47:8562–8584CrossRefGoogle Scholar
  2. 2.
    Yamaguchi M, Nitta K, Miyata H, Masuda T (1997) Rheological properties for binary blends of i-PP and ethylene-1-hexene copolymer. J Appl Polym Sci 63:467–474CrossRefGoogle Scholar
  3. 3.
    Pascual J, Peris F, Boronat T, Fenollar O, Balart R (2012) Study of the effects of multi-walled carbon nanotubes on mechanical performance and thermal stability of polypropylene. Polym Eng Sci 52:733–740CrossRefGoogle Scholar
  4. 4.
    Yang JH, Zhang Y, Zhang YX (2003) Brittle–ductile transition of PP/POE blends in both impact and high speed tensile tests. Polymer 44:5047–5052CrossRefGoogle Scholar
  5. 5.
    Paszkiewicz S, Szymczyk A, Franciszczak P, Taraghi I, Pawlikowska D, Jeziórska R (2017) Characterization of polypropylene/poly (2,6-dimethyl-1,4-phenylene oxide) blends with improved thermal stability. Polym Bull. Google Scholar
  6. 6.
    Bai HW, Wang Y, Song B, Huang T, Han L (2009) Effects of nucleating agents on microstructure and fracture toughness of poly(propylene)/ethylene-propylene-diene terpolymer blends. J Polym Sci Part B Polym Phys 47:46–59CrossRefGoogle Scholar
  7. 7.
    Kaseem M, Hamad K, Deri F (2012) Rheological and mechanical properties of polypropylene/thermoplastic starch blend. Polym Bull 68:1079–1091CrossRefGoogle Scholar
  8. 8.
    Zoukrami F, Haddaoui N, Sclavons M, Devaux J, Vanzeveren C (2018) Rheological properties and thermal stability of compatibilized polypropylene/untreated silica composites prepared by water injection extrusion process. Polym Bull. Google Scholar
  9. 9.
    Li Y, Kong JJ, Xin SY, Han CY, Xiao LG (2017) Crystallization and melting characteristics of iPP nucleated by a sustainable eggshell powder-supported β-nucleating agent. J Therm Anal Calorim 128:1093–1106CrossRefGoogle Scholar
  10. 10.
    Urdampilleta I, González A, Iruin JJ, de la Cal JC, Asua JM (2005) Morphology of high impact polypropylene particles. Macromolecules 38:2795–2801CrossRefGoogle Scholar
  11. 11.
    Parija S, Bhattacharyya AR (2017) Multiwalled carbon nanotubes-based polypropylene composites: Influence of interfacial interaction on the crystallization behavior of polypropylene. Polym Eng Sci 57:183–196CrossRefGoogle Scholar
  12. 12.
    Pukánszky B, Tüdös F, Kalló A, Bodor G (1989) Multiple morphology in polypropylene/ethylene–propylene–diene terpolymer blends. Polymer 30:1399–1406CrossRefGoogle Scholar
  13. 13.
    van der Wal A, Nijhof R, Gaymans RJ (1999) Polypropylene-rubber blends: 2. The effect of the rubber content on the deformation and impact behaviour. Polymer 40:6031–6044CrossRefGoogle Scholar
  14. 14.
    D’Orazio L, Mancarella C, Martuscelli E, Polato F (1991) Polypropylene/ethylene-co-propylene blends: influence of molecular structure and composition of EPR on melt rheology, morphology and impact properties of injection-moulded samples. Polymer 32:1186–1194CrossRefGoogle Scholar
  15. 15.
    Nitta K, Kawada T, Yamahiro M, Mori H, Terano M (2000) Polypropylene-block-poly(ethylene-co-propylene) addition to polypropylene/poly(ethylene-co-propylene) blends: morphology and mechanical properties. Polymer 41:6765–6771CrossRefGoogle Scholar
  16. 16.
    Zhang XF, Xie F, Pen ZL, Zhang Y, Zhang YX, Zhou W (2002) Effect of nucleating agent on the structure and properties of polypropylene/poly(ethylene–octene) blends. Eur Polym J 38:1–6CrossRefGoogle Scholar
  17. 17.
    Bassani A, Pessan LA, Hage E (2001) Toughening of polypropylene with styrene/ethylene-butylene/styrene tri-block copolymer: effects of mixing condition and elastomer content. J Appl Polym Sci 82:2185–2193CrossRefGoogle Scholar
  18. 18.
    Gupta AK, Purwar SN (1986) Dynamic mechanical and impact properties of PP/SEBS blend. J Appl Polym Sci 31:535–551CrossRefGoogle Scholar
  19. 19.
    Silva ALND, Rocha MCG, Coutinho FMB, Bretas R, Scuracchio C (2015) Rheological, mechanical, thermal, and morphological properties of polypropylene/ethylene–octene copolymer blends. J Appl Polym Sci 75:692–704CrossRefGoogle Scholar
  20. 20.
    Liang JZ, Li RKY (2000) Rubber toughening in polypropylene: a review. J Appl Polym Sci 77:409–417CrossRefGoogle Scholar
  21. 21.
    Thomas CY (2001) Mentallocane plastomer modification of polypropylenes. Polym Eng Sci 41:656–671CrossRefGoogle Scholar
  22. 22.
    Bensason B, Minick J, Moet A, Chum S, Hiltner A, Baer E (1996) Classification of homogeneous ethylene–octene copolymers based on comonomer content. J Polym Sci Pol Phys 34:1301–1315CrossRefGoogle Scholar
  23. 23.
    Prieto Ó, Pereña JM, Benavente R, Cerrada ML, Pérez E (2002) Effect of composition and molecular weight on the crystallization behavior of blends of iPP and a metallocenic ethylene/1-octene copolymer. Macromol Chem Phys 203:1844–1851CrossRefGoogle Scholar
  24. 24.
    McNally T, McShane P, Nally GM, Murphy WR, Cook M, Miller A (2002) Rheology, phase morphology, mechanical, impact and thermal properties of polypropylene/metallocene catalysed ethylene 1-octene copolymer blends. Polymer 43:3785–3793CrossRefGoogle Scholar
  25. 25.
    Arriola DJ, Carnahan EM (2006) Catalytic production of olefin block copolymers via chain shuttling polymerization. Science 312:714–719CrossRefGoogle Scholar
  26. 26.
    Chum PS, Swogger KW (2008) Olefin polymer technologies—history and recent progress at The Dow Chemical Company. Prog Polym Sci 33:797–819CrossRefGoogle Scholar
  27. 27.
    Liu G, Zhang X, Liu C, Chen H, Walton K (2010) Morphology and mechanical properties of binary blends of polypropylene with statistical and block ethylene-octene copolymers. J Appl Polym Sci 119:3591–3597CrossRefGoogle Scholar
  28. 28.
    Liu G, Zhang XQ, Li XH, Chen HY, Walton K, Wang DJ (2012) Correlation of miscibility and mechanical properties of polypropylene/olefin block copolymers: effect of chain composition. J Appl Polym Sci 125:666–675CrossRefGoogle Scholar
  29. 29.
    Nittaa KH, Shinb YW, Hashiguchib H, Tanimotoc S, Terano M (2005) Morphology and mechanical properties in the binary blends of isotactic polypropylene and novel propylene-co-olefin random copolymers with isotactic propylene sequence 1. Ethylene–propylene copolymers. Polymer 46:965–975CrossRefGoogle Scholar
  30. 30.
    Shin YW, Uozumi T, Terano M, Nitta K (2001) Synthesis and characterization of ethylene-propylene random copolymers with isotactic propylene sequence. Polymer 42:9611–9615CrossRefGoogle Scholar
  31. 31.
    Greco R, Mancarella C, Martuscelli E, Ragosta G, Yin J (1987) Polyolefin blends: 2. Effect of EPR composition on structure, morphology and mechanical properties of iPP/EPR alloys. Polymer 28:1929–1936CrossRefGoogle Scholar
  32. 32.
    Juliana AL, Felisberti MI (2006) Poly(hydroxybutyrate) and epichlorohydrin elastomers blends: phase behavior and morphology. Eur Polym J 42:602–614CrossRefGoogle Scholar
  33. 33.
    Li R, Zhang XQ, Zhao Y, Hu XT, Zhao XT, Wang DJ (2009) New polypropylene blends toughened by polypropylene/poly(ethylene-co-propylene) in-reactor alloy: Compositional and morphological influence on mechanical properties. Polymer 50:5124–5133CrossRefGoogle Scholar
  34. 34.
    Serpe G, Jarrin J, Dawans F (1990) Morphology-processing relationships in polyethylene-polyamide blends. Polym Eng Sci 30:553–565CrossRefGoogle Scholar
  35. 35.
    Favis BD, Therrien D (1991) Factors influencing structure formation and phase size in an immiscible polymer blend of polycarbonate and polypropylene prepared by twin-screw extrusion. Polymer 32:1474–1481CrossRefGoogle Scholar
  36. 36.
    Lotz B (2014) A new ε crystal modification found in stereodefective isotactic polypropylene samples. Macromolecules 47:7612–7624CrossRefGoogle Scholar
  37. 37.
    Mileva D, Gahleitner M, Gloger D, Tranchida D (2018) Crystal structure: a way to control properties in cast films of polypropylene. Polym Bull. Google Scholar
  38. 38.
    Zhang KY, Ran XH, Wang XM, Han CY, Han LJ, Wen X, Zhuang YG, Dong LS (2011) Improvement in toughness and crystallization of poly(l-lactic acid) by melt blending with poly(epichlorohydrin-co-ethylene oxide). Polym Eng Sci 51:2370–2380CrossRefGoogle Scholar
  39. 39.
    Bartczak Z, Argon AS, Cohen RE, Weinberg M (1999) Toughness mechanism in semi-crystalline polymer blends: I. High-density polyethylene toughened with rubbers. Polymer 40:2331–2346Google Scholar
  40. 40.
    Du FM, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37:9048–9055CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Material Science and EngineeringJilin Jianzhu UniversityChangchunChina
  2. 2.Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina

Personalised recommendations