Advertisement

Polymer Bulletin

, Volume 76, Issue 6, pp 2915–2929 | Cite as

Effect of a smectic liquid crystal polymer as new β-nucleating agent on crystallization structure, melting, and rheological behavior of isotactic polypropylene

  • Yan Liu
  • Xijing Yao
  • Chao Fan
  • Bai WangEmail author
  • Jianshe HuEmail author
Original Paper
  • 55 Downloads

Abstract

A smectic liquid crystal polysiloxane containing cholesteryl groups (SLCP-NA) was synthesized and used as a new kind of β-nucleating agent to induce the formation of β-crystal in isotactic polypropylene (iPP). The nucleating ability of SLCP-NA was investigated using wide-angle X-ray diffraction and differential scanning calorimetry. The content of SLCP-NA and crystallization temperature could lead to substantial changes to crystallization behavior of iPP. As the SLCP-NA content and crystallization temperature increased, the relative content of β-crystal (Kβ) tended to first increase and then decrease. The Kβ value reached a maximum value of 66.3% when the mass fraction of SLCP-NA and the crystallization temperature were 0.2 wt% and 120 °C, respectively. In addition, the rheological behavior of the iPP/SLCP-NA blends was studied. Exhilaratingly, a little mass fraction of SLCP-NA was found to greatly improve the flow ability of the blends, and the melt flow rate increased from 2.9 g/10 min of pure iPP to 43.9 g/10 min of the iPP blend with 0.3 wt% SLCP-NA. Moreover, the addition of SLCP-NA could decrease temperature sensitivity and increase shear sensitivity.

Keywords

Liquid crystal polymer β-Nucleating agent Isotactic polypropylene Crystallization structure Rheological behavior 

Notes

Acknowledgements

This study was supported by Fundamental Research Funds for the Central Universities (N160504001), Doctor Start Funding of Liaoning Province (201601379), Strengthening the Police Force with Science and Technology Foundation Works Special of Ministry of Public Security (2017GABJC14), and Central Public Welfare Research Institutes of basic research special operations (CA268).

References

  1. 1.
    Padden JFJ, Keith HD (1959) Spherulitic crystallization in polypropylene. J Appl Phys 30(10):1479–1484Google Scholar
  2. 2.
    Meille SV, Phillips PJ, Mezghani K et al (1996) α–γ disorder in isotactic polypropylene crystallized under high pressure. Macromolecules 29(2):795–797Google Scholar
  3. 3.
    Tjong SC, Shen JS, Li RKY (1996) Morphological behaviour and instrumented dart impact properties of β-crystalline-phase polypropylene. Polymer 37(12):2309–2316Google Scholar
  4. 4.
    Kawai T, Iijima R, Yamamoto Y et al (2002) Crystal orientation of β-phase isotactic polypropylene induced by magnetic orientation of N,N′-dicyclohexyl-2, 6-naphthalenedicarboxamide. Polymer 43(26):7301–7306Google Scholar
  5. 5.
    Fujiwara Y (1975) Double-melting behavior of beta phase of isotactic polypropylene. Colloid Polym Sci 253(4):273–282Google Scholar
  6. 6.
    Lovinger AJ, Chua JO, Gryte CC (1977) Studies on the α and β forms of isotactic polypropylene by crystallization in a temperature gradient. J Polym Sci Polym Phys 15(4):641–656Google Scholar
  7. 7.
    Varga J, Ehrenstein GW (1996) Formation of β-modification of isotactic polypropylene in its late stage of crystallization. Polymer 37(26):5959–5963Google Scholar
  8. 8.
    Ellis G, Gomez MA, Marco C (2004) Synchrotron infrared microscopy study of the crystalline morphology of the interphase in polypropylene/LCP-Fiber model composites. J Macromol Sci B 43(1):191–206Google Scholar
  9. 9.
    Sun X, Li H, Wang J et al (2006) Shear-induced interfacial structure of isotactic polypropylene (iPP) in iPP/fiber composites. Macromolecules 39(25):8720–8726Google Scholar
  10. 10.
    Byelov D, Panine P, Remerie K et al (2008) Crystallization under shear in isotactic polypropylene containing nucleators. Polymer 49(13):3076–3083Google Scholar
  11. 11.
    Varga J, Karger-Kocsis J (1996) Rules of supermolecular structure formation in sheared isotactic polypropylene melts. J Polym Sci Polym Phys 34(4):657–670Google Scholar
  12. 12.
    Leugering VHJ (1967) Einfluß der kristallstruktur und der überstruktur auf einige eigenschaften von polypropylen. Die Makromol Chem 109(1):204–216Google Scholar
  13. 13.
    Garbarczyk J, Paukszta D (1985) Influence of additives on the structure and properties of polymers. Colloid Polym Sci 263(12):985–990Google Scholar
  14. 14.
    Fujiyama M (1995) Structures and properties of injection moldings of β-crystal nucleator-added polypropylenes: part 1 effect of β-crystal nucleator content. Int Polym Proc 10(2):172–178Google Scholar
  15. 15.
    Shi G, Zhang X (1992) Effect of β-nucleator content on the crystallization and melting behaviour of β-crystalline phase polypropylene. Thermochim Acta 205:235–243Google Scholar
  16. 16.
    Li JX, Cheung WL (1997) Pimelic acid-based nucleating agents for hexagonal crystalline polypropylene. J Vinyl Addit Technol 3(2):151–156Google Scholar
  17. 17.
    Varga J, Mudra I, Ehrenstein GW (1999) Highly active thermally stable β-nucleating agents for isotactic polypropylene. J Appl Polym Sci 74(10):2357–2368Google Scholar
  18. 18.
    Feng J, Chen M (2003) Effects of La3+ containing additive on crystalline characteristics of isotactic polypropylene. Polym Int 52(1):42–45Google Scholar
  19. 19.
    Krache R, Benavente R, Lopez-Majada JM et al (2007) Competition between α, β, and γ polymorphs in a β-nucleated metallocenic isotactic polypropylene. Macromolecules 40(19):6871–6878Google Scholar
  20. 20.
    Varga J, Stoll K, Menyhárd A et al (2011) Crystallization of isotactic polypropylene in the presence of a β-nucleating agent based on a trisamide of trimesic acid. J Appl Polym Sci 121(3):1469–1480Google Scholar
  21. 21.
    Hu JS, Sun J, Su D et al (2014) Effect of a nematic liquid crystalline polymer as highly active beta-nucleator on crystallization structure and morphology of isotactic polypropylene. Int J Polym Anal Charact 19(7):661–668Google Scholar
  22. 22.
    Varga J, Menyhard A (2007) Effect of solubility and nucleating duality of N,N′-dicyclohexyl-2, 6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene. Macromolecules 40(7):2422–2431Google Scholar
  23. 23.
    Marco C, Gomez MA, Ellis G et al (2002) Activity of a β-nucleating agent for isotactic polypropylene and its influence on polymorphic transitions. J Appl Polym Sci 86(3):531–539Google Scholar
  24. 24.
    Lu S, Lu YH, Sun J et al (2015) Study on the structure, melting, and nonisothermal crystallization behaviors of isotactic polypropylene with nematic liquid crystalline polymer as a new beta-nucleating agent. Polym Sci Ser A 57(1):67–75Google Scholar
  25. 25.
    Xu L, Zhang X, Xu K et al (2010) Variation of non-isothermal crystallization behavior of isotactic polypropylene with varying β-nucleating agent content. Polym Int 59(10):1441–1450Google Scholar
  26. 26.
    Xiao W, Wu P, Feng J (2008) Effect of β-nucleating agents on crystallization and melting behavior of isotactic polypropylene. J Appl Polym Sci 108(5):3370–3379Google Scholar
  27. 27.
    Zhang YF, Xin Z (2007) Isothermal crystallization behaviors of isotactic polypropylene nucleated with α/β compounding nucleating agents. J Polym Sci Polym Phys 45(5):590–596Google Scholar
  28. 28.
    Bai H, Wang Y, Song B et al (2009) Nucleating agent induced impact fracture behavior change in PP/POE blend. Polym Bull 62(3):405–419Google Scholar
  29. 29.
    Phillips A, Zhu PW, Edward G (2010) Polystyrene as a versatile nucleating agent for polypropylene. Polymer 51(7):1599–1607Google Scholar
  30. 30.
    Sun J, Li Q, Yao XJ et al (2013) Influence of two liquid crystalline polysiloxanes with different average molecular weight as new beta-nucleator on crystallization structure of isotactic polypropylene. Polym Bull 70(9):2519–2530Google Scholar
  31. 31.
    Qu N, Fu YZ, An F et al (2006) Study on mechanical properties and crystallization behavior of polypropylene and its blends modified by β crystalline form nucleating agent. Polym Plast Technol 45(5):637–640Google Scholar
  32. 32.
    Mormann W, Bröcher M (1999) Liquid crystalline thermosets by polymerization of mesogenic azomethine based diepoxides-influence of reaction rate on phase behaviour. Polymer 40(1):193–198Google Scholar
  33. 33.
    Horváth F, Gombár T, Varga J, Menyhárd A (2017) Crystallization, melting, supermolecular structure and properties of isotactic polypropylene nucleated with dicyclohexyl-terephthalamide. J Therm Anal Calorim 128(2):925–935Google Scholar
  34. 34.
    Zhou PZ, Zhang YF, Lin XF (2018) Thermal stability of nucleation effect of different β-nucleating agents in isotactic polypropylene. J Therm Anal Calorim 132(3):1845–1852Google Scholar
  35. 35.
    He B, Lin XF, Zhang YF (2018) Effect of a novel compound nucleating agent calcium sulfate whisker/β nucleating agent dicyclohexyl-terephthalamide on crystallization and melting behavior of isotactic polypropylene. J Therm Anal Calorim 132(2):1145–1152Google Scholar
  36. 36.
    Su Z, Dong M, Guo Z et al (2007) Study of polystyrene and acrylonitrile-styrene copolymer as special β-nucleating agents to induce the crystallization of isotactic polypropylene. Macromolecules 40(12):4217–4224Google Scholar
  37. 37.
    Su ZQ, Chen XN, Yu ZZ et al (2009) Morphological distribution of polymeric nucleating agents in injection-molded isotactic polypropylene plates and its influence on nucleating efficiency. J Appl Polym Sci 111(2):786–793Google Scholar
  38. 38.
    Li Q, Zhang X, Li J et al (2014) A highly effective reactive liquid crystal for the improved β-nucleation of isotactic polypropylene. Polym Eng Sci 54(9):2112–2120Google Scholar
  39. 39.
    Habibpour S, Zabihirad J, Mohammadi N et al (2016) Modeling of polystyrenic nanoparticles driven β-trans-crystalline efficiency in isotactic polypropylene. RSC Adv 6(76):72500–72509Google Scholar
  40. 40.
    Hu HS, Zhang BY, Sun K, Li QY (2003) Side chain cholesteric liquid crystalline elastomers: synthesis and phase behaviour. Liq Cryst 30(11):1267–1275Google Scholar
  41. 41.
    Jones AT, Aizlewood JM, Beckett DR (1964) Crystalline forms of isotactic polypropylene. Die Makromol Chem 75(1):134–158Google Scholar
  42. 42.
    Wang TT, Nishi T (1977) Spherulitic crystallization in compatible blends of poly (vinylidene fluoride) and poly (methyl methacrylate). Macromolecules 10(2):421–425Google Scholar
  43. 43.
    Li JX, Cheung WL, Jia D (1999) A study on the heat of fusion of β-polypropylene. Polymer 40(5):1219–1222Google Scholar
  44. 44.
    Varga J, Ille A, Fujiwara Y (1990) β, α-Bifurcation of growth during the spherulitic crystallization of polypropylene. Period Polytech Chem 34(4):255Google Scholar
  45. 45.
    Varga J (1986) Melting memory effect of the β-modification of polypropylene. J Therm Anal Calorim 31(1):165–172Google Scholar
  46. 46.
    Lotz B, Fillon B, Thierry A et al (1991) Low Tc growth transitions in isotactic polypropylene: β to α and α to smectic phases. Polym Bull 25(1):101–105Google Scholar
  47. 47.
    Sukananta P, Bualek-Limcharoen S (2003) In Situ modulus enhancement of polypropylene monofilament through blending with a liquid-crystalline copolyester. J Appl Polym Sci 90:1337–1346Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Molecular Science and Engineering, College of ScienceNortheastern UniversityShenyangPeople’s Republic of China
  2. 2.Shengyang Fire Research Institute of Ministry of Public SecurityShenyangPeople’s Republic of China

Personalised recommendations