Advertisement

Polymer Bulletin

, Volume 76, Issue 5, pp 2253–2275 | Cite as

Synthesis of oligoetherols from mixtures of melamine and boric acid and polyurethane foams formed from these oligoetherols

  • Ewelina Chmiel
  • Jacek LubczakEmail author
Original Paper

Abstract

One-pot synthesis of oligoetherols with 1,3,5-triazine ring and boron atoms was described. A mixture of melamine and boric acid was hydroxyalkylated with glycidol and propylene carbonate. The obtained oligoetherols were suitable to obtain polyurethane foams of enhanced thermal resistance and decreased flammability in comparison with the foams based on 1,3,5-triazine ring only. Obtained polyurethane foams stand long-term heating at 200 °C. Moreover, the foams thermally exposed at 150 °C show increased compression strength in comparison with those before annealing. The flammability of foams decreases upon annealing at 150 °C. Furthermore, the foams annealed at 175 °C or higher temperature become nonflammable.

Keywords

Melamine Boric acid Glycidol Propylene carbonate Oligoetherols Polyurethane foams 

Notes

Acknowledgements

The NMR spectra were recorded in Laboratory of Spectrometry placed at Rzeszow University of Technology in the Faculty of Chemistry.

References

  1. 1.
    Kucińska-Lipka J, Sienkiewicz M, Gubańska I, Zalewski S (2017) Microwave radiation in the synthesis of urethane prepolymers. Eur Polym J 88:126–135CrossRefGoogle Scholar
  2. 2.
    Cornille A, Auvergne R, Figovsky O, Boutevin B, Caillol S (2017) A perspective approach to sustainable routes for non-isocyanate polyurethanes. Eur Polym J 87:535–552CrossRefGoogle Scholar
  3. 3.
    Demirel E, Durmaz H, Hizal G, Tunca U (2016) A route toward multifunctional polyurethanes using triple click reactions. J Polym Sci A 1(54):480–486CrossRefGoogle Scholar
  4. 4.
    Reddy KR, Raghu VA, Jeong HM (2008) Synthesis and characterization of novel polyurethanes based on 4,4′-{1,4-phenylenebis[methylylidenenitrilo]}diphenol. Polymer Bull 60:609–616CrossRefGoogle Scholar
  5. 5.
    Reddy KR, Raghu VA, Jeong HM, Siddaramaiah (2009) Synthesis and characterization of pyridine-based polyurethanes. Des Monomers Polym 12:109–118CrossRefGoogle Scholar
  6. 6.
    Li P, Ren H, Qiu F, Xu J, Yu Z, Yang P, Xu B, Jiang Y, Yang D (2012) Preparation and properties of graphene oxide-modified waterborne polyurethane–acrylate hybrids. J Macromol Sci Phys 51:197–2007CrossRefGoogle Scholar
  7. 7.
    Lubczak J (2011) Polyhydroxyalkyl derivatives and polyetherols obtained from azacyclic compounds. Part I. Reactions with oxiranes. Polimery 56:360–368CrossRefGoogle Scholar
  8. 8.
    Lubczak J (2011) Polyhydroxyalkyl derivatives and polyetherols obtained from azacyclic compounds. Part II. Reaction with formaldehyde and alkylene carbonates. Polimery 56:452–460CrossRefGoogle Scholar
  9. 9.
    Janowska G, Przygocki W, Włochowicz A (2007) Flammability of polymers and plastics. WNT, WarsawGoogle Scholar
  10. 10.
    Czupryński B, Paciorek-Sadowska J, Liszkowska J (2006) Modifications of the rigid polyurethane–polyisocyanurate foams. J Appl Polym Sci 100:2020–2029.  https://doi.org/10.1002/app.22604 CrossRefGoogle Scholar
  11. 11.
    Czupryński B, Paciorek-Sadowska J, Liszkowska J (2006) Studies on effect of tri(2-hydroxypropyl), tri(2-hydroxybutyl) and tri(hydroxythiodiethylene) borates on thermal and heat properties of rigid polyurethane–polyisocyanurate foams. Chin J Chem 24:1796–1799.  https://doi.org/10.1002/cjoc.200690336 CrossRefGoogle Scholar
  12. 12.
    Czupryński B, Paciorek-Sadowska J, Liszkowska J (2002) The effect of tri(1-chloro-2-etoxy-propane-2-ol) borate on the properties of rigid polyurethane–polyisocyanurate foams. Polimery 47:727–729CrossRefGoogle Scholar
  13. 13.
    Czupryński B, Liszkowska J, Paciorek-Sadowska J (2004) Effect of selected boroorganic compounds on thermal and heat properties of rigid polyurethane–polyisocyanurate foams. J Appl Polym Sci 95:400–403.  https://doi.org/10.1002/app.21380 CrossRefGoogle Scholar
  14. 14.
    Czupryński B, Liszkowska J, Paciorek-Sadowska J (2004) Effect of tri[(3-chloro-2-hydroxy-1-propoxy)-1-butylene] borate on the functional properties of rigid polyurethane–polyisocyanurate foams. Polimery 49:187–190CrossRefGoogle Scholar
  15. 15.
    Łukasiewicz B, Lubczak J (2012) Oligoetherols and polyurethane foams with 1,3,5-triazine ring and boron atoms. Polimery 57:819–829CrossRefGoogle Scholar
  16. 16.
    Lubczak J, Łukasiewicz B, Myśliwiec B (2013) Synthesis and applications of oligoetherols with perhydro-1,3,5-triazine ring and boron. J Appl Polym Sci 127:2057–2066.  https://doi.org/10.1002/app.37738 CrossRefGoogle Scholar
  17. 17.
    Lubczak J, Łukasiewicz B (2012) Oligoetherols and polyurethane foams with azacyclic rings and boron. Chemik 67:275–288Google Scholar
  18. 18.
    Chmiel E, Lubczak J, Stagraczyński R (2017) Modification of polyurethane foams with 1,3,5-triazine ring and boron. Macromol Res 25(4):317–324CrossRefGoogle Scholar
  19. 19.
    Brojer Z, Hertz Z, Penczek P (1972) Epoxide resins. WNT, WarsawGoogle Scholar
  20. 20.
    Kijowska D, Wołowiec S, Lubczak J (2004) Kinetics and mechanism of initial steps of synthesis of polyetherols from melamine and ethylene carbonate. J Appl Polym Sci 93:294–300.  https://doi.org/10.1002/app.20453 CrossRefGoogle Scholar
  21. 21.
    Polyethers for polyurethanes. Test methods. Determination of the hydroxyl number. Polish Standards PN-93/C-89052.03. Ed. Polish Committee for StandardizationGoogle Scholar
  22. 22.
    Broniewski T, Iwasiewicz A, Kapko J, Płaczek W (1967) Testing and evaluation of properties of plastics. WNT, WarsawGoogle Scholar
  23. 23.
    Dryński T (1967) Laboratory of physics. PWN, WarsawGoogle Scholar
  24. 24.
    Cellular Plastics and Rubbers. Determination of apparent (bulk) Density. Polish (European) Standards PN-EN ISO 845-2000. Ed. Polish Committee for StandardizationGoogle Scholar
  25. 25.
    Cellular Plastics, rigid. Determination of Water Absorption. Polish (European) Standards PN-EN ISO 2896-1986. Ed. Polish Committee for StandardizationGoogle Scholar
  26. 26.
    Cellular Plastics, rigid. Test of dimensional Stability. Polish (European) Standards PN-EN ISO 2796-1986. Ed. Polish Committee for StandardizationGoogle Scholar
  27. 27.
    Cellular Plastics, Compression Test for rigid Materials. Polish (European) Standards PN-EN ISO 844-1978. Ed. Polish Committee for StandardizationGoogle Scholar
  28. 28.
    Flexible Cellular Polymeric Materials, Determination of tensile strength and elongation at break. Polish (European) Standards PN-EN ISO 1798-2009 Ed. Polish Committee for StandardizationGoogle Scholar
  29. 29.
    Flexible Cellular polymeric Materials—Laboratory Characteristics of small specimens Subject to a small Flame. Polish (European) Standards PN-EN ISO 3582-2002. Ed. Polish Committee for StandardizationGoogle Scholar
  30. 30.
    Węglowska E, Lubczak J (2005) Polyetherols from isocyanuric acid and propylene carbonate. J Appl Polym Sci 98:2130–2138CrossRefGoogle Scholar
  31. 31.
    Czupryński B (2004) Topics on chemistry and technology of polyurethanes. Casimir the Great Academy of Bydgoszcz, BydgoszczGoogle Scholar
  32. 32.
    Wirpsza Z (1991) Polyurethanes. WNT, WarsawGoogle Scholar
  33. 33.
    Lubczak J, Chmiel-Szukiewicz E, Duliban J, Głowacz-Czerwonka D, Lubczak R, Łukasiewicz B, Zarzyka I, Łodyga A, Tyński P, Minda-Data D, Kozioł M, Majerczyk Z (2014) Polyurethane foams with 1,3,5-triazine ring of improved thermal stability. Przemysł Chemiczny 93:1690–1697Google Scholar
  34. 34.
    Cogen JM, Lin TS, Lyon RE (2009) Correlations between pyrolysis combustion flow calorimetry and conventional flammability tests with halogen-free flame retardant polyolefin compounds. Fire Mater 33:33–50.  https://doi.org/10.1002/fam.980 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Organic ChemistryRzeszów University of TechnologyRzeszówPoland

Personalised recommendations