Advertisement

Polymer Bulletin

, Volume 76, Issue 5, pp 2559–2578 | Cite as

Polystyrene degraded and functionalized with acrylamide for removal of Pb(II) metal ions

  • J. P. Reyna
  • María C. García-López
  • N. A. Pérez-Rodríguez
  • P. Elizondo-Martínez
  • H. Maldonado-Textle
  • B. L. Rivas
  • M. G. Sánchez-AnguianoEmail author
Original Paper
  • 96 Downloads

Abstract

The present study describes the synthesis of a new material prepared by low-temperature thermocatalytic degradation of polystyrene (PS) by using zeolite clinoptilonite as a degradation template and subsequent functionalization with acrylamide (AAm) for the removal of lead (Pb(II)) metal ions from aqueous solutions. Infrared spectroscopy (FTIR), field emission scanning electron microscopy, thermogravimetric analysis and differential scanning calorimeter techniques confirm the successful functionalization of PS oligomers, before applying this material as an alternative adsorbent. A preliminar absorption study using functionalized PS oligomers as an adsorbent indicates that material has a good potential to absorb heavy metal of Pb(II) from the aqueous solutions. Equilibrium data show a maximum adsorption capacity of 33.85 mg g−1 with a percentage removal of 90.94%, which fitted well with Freundlich model and kinetic data were best described by pseudo-second-order model. Desorption studies revealed that PS oligomers functionalized with acrylamide as monomer source can be recovered using 0.5 M EDTA as regenerating agent, with a maximum recovery of Pb(II) metal ions of 97.28%. These results reveal that PS oligomers functionalized with acrylamide could be recommended as a promising adsorbent for Pb(II) metal ions contained in aqueous systems.

Keywords

Polystyrene Free radical polymerization Chemical functionalization Lead removal Thermocatalytic degradation 

Notes

Acknowledgements

Authors thank to PAICYT-UANL (CE327-15) for financial support J.P.R. Thanks for the scholarship from CONACYT. Funding was provided by Universidad Autónoma de Nuevo León.

Supplementary material

289_2018_2479_MOESM1_ESM.docx (4.5 mb)
Supplementary material 1 (DOCX 4579 kb)

References

  1. 1.
    Karaoğlu MH, Kula M, Uğurlu M (2013) Adsorption kinetic and equilibrium studies on removal of lead (II) onto glutamic acid/sepiolite. Clean Soil Air Water 41:548–556.  https://doi.org/10.1002/clen.201000360 CrossRefGoogle Scholar
  2. 2.
    Özgül G, Ferdi G (2007) Adsorption of lead(II) ions from aqueous solutions by activated carbon prepared from biomass plant material of Euphorbia rigida. Chem Eng J 132:289–297.  https://doi.org/10.1016/j.cej.2007.01.010 CrossRefGoogle Scholar
  3. 3.
    Dai Lam T, Van Chat N, Bach VQ, Loi VD, Van Anh N (2014) Simultaneous degradation of 2, 4, 6-trinitrophenyl-N-methylnitramine (Tetryl) and hexahydro-1, 3, 5-trinitro-1, 3, 5 triazine (RDX) in polluted wastewater using some advanced oxidation processes. J Ind Eng Chem 20:1468–1475.  https://doi.org/10.1016/j.jiec.2013.07.033 CrossRefGoogle Scholar
  4. 4.
    Karimnezhad H, Salehi E, Rajabi L, Azimi S, Derakhshan AA, Ansari M (2014) Dynamic removal of n-hexane from water using nanocomposite membranes: serial coating of para-aminobenzoate alumoxane, boehmite-epoxide and chitosan on Kevlar fabrics. J Ind Eng Chem 20:4491–4498.  https://doi.org/10.1016/j.jiec.2014.02.021 CrossRefGoogle Scholar
  5. 5.
    Alexander JT, Hai FI, Al-aboud TM (2012) Chemical coagulation-based processes for trace organic contaminant removal: current state and future potential. J Environ Manag 111:195–207.  https://doi.org/10.1016/j.jenvman.2012.07.023 CrossRefGoogle Scholar
  6. 6.
    Auta M, Hameed BH (2013) Acid modified local clay beads as effective low-cost adsorbent for dynamic adsorption of methylene blue. J Ind Eng Chem 19:1153–1161.  https://doi.org/10.1016/j.jiec.2012.12.012 CrossRefGoogle Scholar
  7. 7.
    Khosravi M, Azizian S (2014) Adsorption of anionic dyes from aqueous solution by iron oxide nanospheres. J Ind Eng Chem 20:2561–2567.  https://doi.org/10.1016/j.jiec.2013.10.040 CrossRefGoogle Scholar
  8. 8.
    Momčilović M, Purenović M, Bojić A, Zarubica A, Randelovid M (2011) Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination 276:53–59.  https://doi.org/10.1016/j.desal.2011.03.013 CrossRefGoogle Scholar
  9. 9.
    Unuabonah EI, Adebowale KO, Olu-Owolabi BI (2007) Kinetic and thermodynamic studies of the adsorption of lead (II) ions onto phosphate-modified kaolinite clay. J Hazard Mater 144:386–395.  https://doi.org/10.1016/j.jhazmat.2006.10.046 CrossRefGoogle Scholar
  10. 10.
    Faghihian NY (2009) A comparative study of the sorption of Cd(II) and Pb(II) ions from aqueous solution by local bentonite and clinoptilolite. Adsorpt Sci Technol 27:107–115.  https://doi.org/10.1260/026361709788921588 CrossRefGoogle Scholar
  11. 11.
    Wang S, Ariyanto E (2007) Competitive adsorption of malachite green and Pb ions on natural zeolite. J Colloid Interface Sci 314:25–31.  https://doi.org/10.1016/j.jcis.2007.05.032 CrossRefGoogle Scholar
  12. 12.
    Gupta VK, Ali I (2004) Removal of lead and chromium from wastewater using bagasse fly ash—a sugar industry waste. J Colloid Interface Sci 271:321–328.  https://doi.org/10.1016/j.jcis.2003.11.007 CrossRefGoogle Scholar
  13. 13.
    Vieira DM, Da Costa ACA, Henriques CA, Cardoso VL, Pessoa de Franca F (2007) Biosorption of lead by the brown seaweed Sargassum filipendula-batch and continuous pilot studies. Electron J Biotechnol 10:368–375.  https://doi.org/10.4067/S0717-34582007000300004 CrossRefGoogle Scholar
  14. 14.
    Kim SH, Song H, Nisola GM, Ahn J, Galera MM, Hee Lee C, Chung WJ (2006) Adsorption of lead(II) ions using surface-modified chitins. J Ind Eng Chem 12:469–475Google Scholar
  15. 15.
    Mishra PC, Islam M, Patel RK (2013) Removal of lead (II) by chitosan from aqueous medium. Sep Sci Technol 48:1234–1242.  https://doi.org/10.1080/01496395.2012.727059 CrossRefGoogle Scholar
  16. 16.
    Liu C, Bai R, San Ly Q (2008) Selective removal of copper and lead ions by diethylenetriamine functionalized adsorbent: behaviors and mechanisms. Water Res 42:1511–1522.  https://doi.org/10.1016/j.watres.2007.10.031 CrossRefGoogle Scholar
  17. 17.
    Pietrelli L, Palombo M, Taresco V, Crisante F, Francolini I, Piozzi A (2017) Copper (II) adsorption capacity of a novel hydroxytyrosol-based polyacrylate. Polym Bull 74:1175–1191.  https://doi.org/10.1007/s00289-016-1770-8 CrossRefGoogle Scholar
  18. 18.
    Al-Homoud MS (2005) Performance characteristics and practical applications of common building thermal insulation materials. Build Environ 40:353–366.  https://doi.org/10.1016/j.buildenv.2004.05.013 CrossRefGoogle Scholar
  19. 19.
    Memon JR, Memon S, Bhanger MI, Khuhawar MY, Allen GC, Memon GZ, Pathan AG (2008) Efficiency of Cd(II) removal from aqueous media using chemically modified polystyrene foam. Eur Polym J 44:1501–1511.  https://doi.org/10.1016/j.eurpolymj.2008.02.018 CrossRefGoogle Scholar
  20. 20.
    Xiong C, Zhou S, Liu X, Jia Q et al (2014) 2-Aminothiazole functionalized polystyrene for selective removal of Au(III) in aqueous solutions. Ind Eng Chem Res 53:2441–2448.  https://doi.org/10.1021/ie403502r CrossRefGoogle Scholar
  21. 21.
    Bekri-Abbes I, Bayoudh S, Baklouti M (2006) Converting waste polystyrene into adsorbent: potential use in the removal of lead and cadmium ions from aqueous solution. J Polym Environ 14:249–256.  https://doi.org/10.1007/s10924-006-0018-3 CrossRefGoogle Scholar
  22. 22.
    Bulbul Sonmez H, Senkal BF, Sherrington DC, Bıcak N (2003) Atom transfer radical graft polymerization of acrylamide from N-chlorosulfonamidated polystyrene resin, and use of the resin in selective mercury removal. React Funct Polym 55:1–8.  https://doi.org/10.1016/S1381-5148(02)00193-1 CrossRefGoogle Scholar
  23. 23.
    Reddy R, Reddy KH (2003) Heavy metal ion uptake properties of polystyrene-supported chelating polymer resins. Indian Acad Sci 115:155–160.  https://doi.org/10.1007/BF02704254 CrossRefGoogle Scholar
  24. 24.
    Saadeh HA, Shairah EAA, Charef N, Mubarak MS (2012) Synthesis and adsorption properties, towards some heavy metal ions, of a new polystyrene-based terpyridine polymer. J Appl Polym Sci 124:2717–2724.  https://doi.org/10.1002/app.34977 CrossRefGoogle Scholar
  25. 25.
    Giles CH, Smith D, Huitson A (1974) A general treatment and classification of the solute isotherm. I. Theoretical. J Colloid Interface Sci 47:755–765.  https://doi.org/10.1016/0021-9797(74)90252-5 CrossRefGoogle Scholar
  26. 26.
    Yang X, Al-Duri B (2005) Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon. J Colloid Interface Sci 287:25–34.  https://doi.org/10.1016/j.jcis.2005.01.093 CrossRefGoogle Scholar
  27. 27.
    Lagregren S (1898) About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar 24:1–39Google Scholar
  28. 28.
    Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Chem Eng 89:31–59Google Scholar
  29. 29.
    Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I. Solids. J Am Chem Soc 38:2221–2295.  https://doi.org/10.1021/ja02254a006 CrossRefGoogle Scholar
  30. 30.
    Appel J (1973) Freundlich’s adsorption isotherm. Surf Sci 39:237–244.  https://doi.org/10.1016/0039-6028(73)90105-2 CrossRefGoogle Scholar
  31. 31.
    Martins AC, Pezoti O, Cazetta AL, Bedin KC, Yamazaki DAS, Bandoch GFG, Asefa T, Visentainer JV, Almeida VC (2015) Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: kinetic and equilibrium studies. Chem Eng J 260:291–299.  https://doi.org/10.1016/j.cej.2014.09.017 CrossRefGoogle Scholar
  32. 32.
    Sebestyén Z, Barta-Rajnaia E, Bozia J, Blazsó M, Jakab E, Miskolczi N, Czégény Z (2017) Catalytic pyrolysis of biomass and plastic mixtures using HZSM-5 zeolite. Energy Proc 105:718–723.  https://doi.org/10.1016/j.egypro.2017.03.381 CrossRefGoogle Scholar
  33. 33.
    Xiong C, Yao C (2009) Synthesis, characterization and application of triethylenetetramine modified polystyrene resin in removal of mercury, cadmium and lead from aqueous solutions. Chem Eng J 155:844–850.  https://doi.org/10.1016/j.cej.2009.09.009 CrossRefGoogle Scholar
  34. 34.
    Zu J, Shi F, Liu R, Ye M (2013) Amination of glycidyl methacrylate-grafted polystyrene particles and their adsorption capacity for Nd3+ and Cd2+. Iran Polym J 22:259–265.  https://doi.org/10.1007/s13726-013-0123-9 CrossRefGoogle Scholar
  35. 35.
    Öztürk T, Kayğın O, Göktaş M, Hazer B (2016) Synthesis and characterization of graft copolymers based on polyepichlorohydrin via reversible addition-fragmentation chain transfer polymerization. J Macromol Sci A 53:362–367.  https://doi.org/10.1080/10601325.2016.1166002 CrossRefGoogle Scholar
  36. 36.
    Bahramzadeh A, Zahedi P, Abdouss M (2016) Acrylamide-plasma treated electrospun polystyrene nanofibrous adsorbents for cadmium and nickel ions removal from aqueous solutions. J Appl Polym Sci 133:42944.  https://doi.org/10.1002/app.42944 CrossRefGoogle Scholar
  37. 37.
    Shen S, Pu Z, Zheng P, Liu X, Jia K (2016) Synthesis and properties of cross-linkable poly(arylene ether nitrile)s containing side propenyl groups. High Perform Polym 28:562–569.  https://doi.org/10.1177/0954008315591188 CrossRefGoogle Scholar
  38. 38.
    Vetriselvi V, Santhi J (2015) Redox polymer as an adsorbent for the removal of chromium (VI) and lead (II) from the tannery effluents. Water Resour Ind 10:39–52.  https://doi.org/10.1016/j.wri.2015.02.003 CrossRefGoogle Scholar
  39. 39.
    Garg UK, Kaur MP, Garg VK, Sud D (2007) Removal of hexavalent chromium from aqueous solution B agricultural waste biomass. J Hazard Mater 140:60–68.  https://doi.org/10.1016/j.jhazmat.2006.06.056 CrossRefGoogle Scholar
  40. 40.
    Yigitoglu M, Arslan M, Sacak O, Unal HI (2002) Adsorption behavior of copper (II) ion from aqueous solution on 4-vinyl pyridine/2-hydroxyethylmethaacrylate mixture grafted poly(ethylene terephathalate) fibers. J Biol Chem 31:133–143.  https://doi.org/10.1002/(SICI)1097-4628(20000207)75:6%3c766:AID-APP5%3e3.0.CO;2-B Google Scholar
  41. 41.
    Hammed BH (2009) Spent tea leaves: a new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions. J Hazard Mater 161:753–759.  https://doi.org/10.1016/j.jhazmat.2008.04.019 CrossRefGoogle Scholar
  42. 42.
    Mittal A, Mittal J, Malviya A, Kaur D, Gupta VK (2010) Adsorption of hazardous dye crystal violet from wastewater by waste materials. J Colloid Interface Sci 343:463–473.  https://doi.org/10.1016/j.jcis.2009.11.060 CrossRefGoogle Scholar
  43. 43.
    Shokoohi R, Saghi MH, Ghafari HR, Hadi M (2009) Biosorption of iron from aqueous solution by dried biomass of activated sludge. Iran J Environ Health Sci Eng 6(2):107–114Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • J. P. Reyna
    • 1
  • María C. García-López
    • 2
  • N. A. Pérez-Rodríguez
    • 1
  • P. Elizondo-Martínez
    • 1
  • H. Maldonado-Textle
    • 3
  • B. L. Rivas
    • 4
  • M. G. Sánchez-Anguiano
    • 1
    Email author
  1. 1.Facultad de Ciencias QuímicasUniversidad Autónoma de Nuevo LeónNuevo LeónMexico
  2. 2.Facultad de Ciencias QuímicasCONACYT-Universidad Autónoma de Nuevo LeónNuevo LeónMexico
  3. 3.Centro de Investigación en Química AplicadaSaltilloMexico
  4. 4.Departamento de Polímeros, Facultad de Ciencias QuímicasUniversidad de ConcepciónConcepciónChile

Personalised recommendations