Advertisement

High toughness poly(lactic acid) (PLA) formulations obtained by ternary blends with poly(3-hydroxybutyrate) (PHB) and flexible polyesters from succinic acid

  • M. J. Garcia-Campo
  • L. Quiles-Carrillo
  • L. Sanchez-Nacher
  • R. Balart
  • N. Montanes
Original Paper
  • 110 Downloads

Abstract

This work reports the development of poly(lactic acid) (PLA) formulations with improved toughness by ternary blends with poly(3-hydroxybutyrate) (PHB) and two different flexible polyesters derived from succinic acid, namely poly(butylene succinate) (PBS) and a copolymer, poly(butylene succinate-co-adipate) (PBSA). The main aim of this work is to increase the low intrinsic toughness of PLA without compromising the thermal properties by manufacturing ternary blends using epoxidized vegetable oils as compatibilizer agents. The ternary blends were manufactured by reactive extrusion in a co-rotating extruder and were subjected to mechanical, thermal, thermos-mechanical and morphology characterization. The obtained results confirm that these two succinic acid-derived polymers, i.e., PBS and PBSA, positively contribute to increase ductile properties in ternary blends with PLA and PHB with a subsequent improvement on impact toughness. In addition, both epoxidized vegetable oils, ELO and ESBO, are responsible for somewhat compatibilization between all three polyesters in blends which gives improved ductile properties with regard to uncompatibilized ternary blends. In addition, the temperature range in which these materials can be used is broader than ternary blends with other flexible polyester such as poly(e-caprolactone), as both PBS and PBSA melt at about 100 °C. These PLA-based materials with improved impact properties offer interesting applications in the packaging industry.

Keywords

Poly(lactic acid) (PLA) Impact toughness Ternary blends Mechanical properties Morphology 

Notes

Acknowledgements

This work was supported by the Ministry of Economy and Competitiveness (MINECO) Grant Numbers MAT2014-59242-C2-1-R and MAT2017-84909-C2-2-R. L. Quiles-Carrillo acknowledges Generalitat Valenciana (GV) for financial support through a FPI Grant (ACIF/2016/182) and the Spanish Ministry of Education, Culture, and Sports (MECD) for his FPU Grant (FPU15/03812).

References

  1. 1.
    Arrieta MP, Samper MD, Aldas M, Lopez J (2017) On the use of PLA-PHB blends for sustainable food packaging applications. Materials 10(9):26.  https://doi.org/10.3390/ma10091008 CrossRefGoogle Scholar
  2. 2.
    Burgos N, Armentano I, Fortunati E, Dominici F, Luzi F, Fiori S, Cristofaro F, Visai L, Jimenez A, Kenny JM (2017) Functional properties of plasticized bio-based poly(lactic acid)_poly(hydroxybutyrate) (PLA_PHB) films for active food packaging. Food Bioprocess Technol 10(4):770–780.  https://doi.org/10.1007/s11947-016-1846-3 CrossRefGoogle Scholar
  3. 3.
    Moustafa H, El Kissi N, Abou-Kandil AI, Abdel-Aziz MS, Dufresne A (2017) PLA/PBAT bionanocomposites with antimicrobial natural rosin for green packaging. ACS Appl Mater Interfaces 9(23):20132–20141.  https://doi.org/10.1021/acsami.7b05557 CrossRefPubMedGoogle Scholar
  4. 4.
    Bergstrom JS, Hayman D (2016) An overview of mechanical properties and material modeling of polylactide (PLA) for medical applications. Ann Biomed Eng 44(2):330–340.  https://doi.org/10.1007/s10439-015-1455-8 CrossRefPubMedGoogle Scholar
  5. 5.
    Leroy A, Ribeiro S, Grossiord C, Alves A, Vestberg RH, Salles V, Brunon C, Gritsch K, Grosgogeat B, Bayon Y (2017) FTIR microscopy contribution for comprehension of degradation mechanisms in PLA-based implantable medical devices. J Mater Sci Mater Med 28(6):13.  https://doi.org/10.1007/s10856-017-5894-7 CrossRefGoogle Scholar
  6. 6.
    Ferreira RTL, Amatte IC, Dutra TA, Burger D (2017) Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers. Compos Part B Eng 124:88–100.  https://doi.org/10.1016/j.compositesb.2017.05.013 CrossRefGoogle Scholar
  7. 7.
    Song Y, Li Y, Song W, Yee K, Lee KY, Tagarielli VL (2017) Measurements of the mechanical response of unidirectional 3D-printed PLA. Mater Des 123:154–164.  https://doi.org/10.1016/j.matdes.2017.03.051 CrossRefGoogle Scholar
  8. 8.
    Jandas PJ, Mohanty S, Nayak SK (2013) Surface treated banana fiber reinforced poly (lactic acid) nanocomposites for disposable applications. J Clean Prod 52:392–401.  https://doi.org/10.1016/j.jclepro.2013.03.033 CrossRefGoogle Scholar
  9. 9.
    Nagarajan V, Mohanty AK, Misratt M (2016) Perspective on polylactic acid (PLA) based sustainable materials for durable applications: focus on toughness and heat resistance. ACS Sustain Chem Eng 4(6):2899–2916.  https://doi.org/10.1021/acssuschemeng.6600321 CrossRefGoogle Scholar
  10. 10.
    Notta-Cuvier D, Odent J, Delille R, Murariu M, Lauro F, Raquez JM, Bennani B, Dubois P (2014) Tailoring polylactide (PLA) properties for automotive applications: effect of addition of designed additives on main mechanical properties. Polym Test 36:1–9.  https://doi.org/10.1016/j.polymertesting.2014.03.007 CrossRefGoogle Scholar
  11. 11.
    Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38(10–11):1504–1542.  https://doi.org/10.1016/j.progpolymsci.2013.05.014 CrossRefGoogle Scholar
  12. 12.
    Pozo Morales A, Guemes A, Fernandez-Lopez A, Carcelen Valero V, De La Rosa Llano S (2017) Bamboo–polylactic acid (PLA) composite material for structural applications. Materials 10(11):1286.  https://doi.org/10.3390/ma10111286 CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos Part A Appl Sci Manuf 77:1–25.  https://doi.org/10.1016/j.compositesa.2015.06.007 CrossRefGoogle Scholar
  14. 14.
    Balart JF, Fombuena V, Fenollar O, Boronat T, Sanchez-Nacher L (2016) Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Compos Part B Eng 86:168–177.  https://doi.org/10.1016/j.compositesb.2015.09.063 CrossRefGoogle Scholar
  15. 15.
    Qiang T, Yu DM, Gao HH (2012) Impact strength and fractal characteristic of PLA-based wood plastic composites. In: Shao Y et al (eds) Advanced building materials and sustainable architecture, Pts 1–4. Trans Tech Publications Ltd, Durnten-Zurich, p 683Google Scholar
  16. 16.
    Kfoury G, Hassouna F, Raquez JM, Toniazzo V, Ruch D, Dubois P (2014) Tunable and durable toughening of polylactide materials via reactive extrusion. Macromol Mater Eng 299(5):583–595.  https://doi.org/10.1002/mame.201300265 CrossRefGoogle Scholar
  17. 17.
    Li Z, Tan BH, Lin T, He C (2016) Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications. Prog Polym Sci 62:22–72.  https://doi.org/10.1016/j.progpolymsci.2016.05.003 CrossRefGoogle Scholar
  18. 18.
    Qian W, Song T, Ye M, Xu P, Lu G, Huang X (2017) PAA-g-PLA amphiphilic graft copolymer: synthesis, self-assembly, and drug loading ability. Polym Chem 8(28):4098–4107.  https://doi.org/10.1039/c7py00762k CrossRefGoogle Scholar
  19. 19.
    Arrieta MP, Lopez J, Lopez D, Kenny JM, Peponi L (2015) Development of flexible materials based on plasticized electrospun PLA-PHB blends: structural, thermal, mechanical and disintegration properties. Eur Polym J 73:433–446.  https://doi.org/10.1016/j.eurpolymj.2015.10.036 CrossRefGoogle Scholar
  20. 20.
    Fortunati E, Puglia D, Iannoni A, Terenzi A, Kenny JM, Torre L (2017) Processing conditions, thermal and mechanical responses of stretchable poly (lactic acid)poly (butylene succinate) films. Materials 10(7):16.  https://doi.org/10.3390/ma10070809 CrossRefGoogle Scholar
  21. 21.
    Maiza M, Benaniba MT, Quintard G, Massardier-Nageotte V (2015) Biobased additive plasticizing polylactic acid (PLA). Polimeros-Ciencia E Tecnologia 25(6):581–590.  https://doi.org/10.1590/0104-1428.1986 CrossRefGoogle Scholar
  22. 22.
    Shirai MA, Olivera Mueller CM, Eiras Grossmann MV, Yamashita F (2015) Adipate and citrate esters as plasticizers for poly(lactic acid)/thermoplastic starch sheets. J Polym Environ 23(1):54–61.  https://doi.org/10.1007/s10924-014-0680-9 CrossRefGoogle Scholar
  23. 23.
    Hassouna F, Raquez J-M, Addiego F, Dubois P, Toniazzo V, Ruch D (2011) New approach on the development of plasticized polylactide (PLA): grafting of poly (ethylene glycol)(PEG) via reactive extrusion. Eur Polym J 47(11):2134–2144CrossRefGoogle Scholar
  24. 24.
    Zubir NHM, Sam ST, Zulkepli NN, Omar MF (2018) The effect of rice straw particulate loading and polyethylene glycol as plasticizer on the properties of polylactic acid/polyhydroxybutyrate-valerate blends. Polym Bull 75(1):61–76CrossRefGoogle Scholar
  25. 25.
    Pluta M, Piorkowska E (2015) Tough crystalline blends of polylactide with block copolymers of ethylene glycol and propylene glycol. Polym Test 46:79–87.  https://doi.org/10.1016/j.polymertesting.2015.06.014 CrossRefGoogle Scholar
  26. 26.
    Nazari T, Garmabi H (2018) The effects of processing parameters on the morphology of PLA/PEG melt electrospun fibers. Polym Int 67(2):178–188CrossRefGoogle Scholar
  27. 27.
    Burgos N, Martino VP, Jimenez A (2013) Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polym Degrad Stab 98(2):651–658.  https://doi.org/10.1016/j.polymdegradstab.2012.11.009 CrossRefGoogle Scholar
  28. 28.
    Burgos N, Tolaguera D, Fiori S, Jimenez A (2014) Synthesis and characterization of lactic acid oligomers: evaluation of performance as poly(lactic acid) plasticizers. J Polym Environ 22(2):227–235.  https://doi.org/10.1007/s10924-013-0628-5 CrossRefGoogle Scholar
  29. 29.
    Ali F, Chang Y-W, Kang SC, Yoon JY (2009) Thermal, mechanical and rheological properties of poly (lactic acid)/epoxidized soybean oil blends. Polym Bull 62(1):91–98CrossRefGoogle Scholar
  30. 30.
    Ferri JM, Fenollar O, Jorda-Vilaplana A, García-Sanoguera D, Balart R (2016) Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/ polycaprolactone blends. Polym Int 65:453–463CrossRefGoogle Scholar
  31. 31.
    Ostafinska A, Fortelny I, Hodan J, Krejcikova S, Nevoralova M, Kredatusova J, Krulis Z, Kotek J, Slouf M (2017) Strong synergistic effects in PLA/PCL blends: impact of PIA matrix viscosity. J Mech Behav Biomed Mater 69:229–241.  https://doi.org/10.1016/j.jmbbm.2017.01.015 CrossRefPubMedGoogle Scholar
  32. 32.
    Ning Z, Liu J, Jiang N, Gan Z (2017) Enhanced crystallization rate and mechanical properties of poly (l-lactic acid) by stereocomplexation with four-armed poly (ϵ-caprolactone)-block-poly (d-lactic acid) diblock copolymer. Polym Int 66(6):968–976CrossRefGoogle Scholar
  33. 33.
    Fortelný I, Ostafińska A, Michálková D, Jůza J, Mikešová J, Šlouf M (2015) Phase structure evolution during mixing and processing of poly (lactic acid)/polycaprolactone (PLA/PCL) blends. Polym Bull 72(11):2931–2947CrossRefGoogle Scholar
  34. 34.
    Lai S-M, Liu Y-H, Huang C-T, Don T-M (2017) Miscibility and toughness improvement of poly(lactic acid)/poly(3-Hydroxybutyrate) blends using a melt-induced degradation approach. J Polym Res.  https://doi.org/10.1007/s10965-017-1253-0 CrossRefGoogle Scholar
  35. 35.
    Amor A, Okhay N, Guinault A, Miquelard-Garnier G, Sollogoub C, Gervais M (2018) Combined compatibilization and plasticization effect of low molecular weight poly(lactic acid) in poly(lactic acid)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blends. Exp Polym Lett 12(2):114–125.  https://doi.org/10.3144/expresspolymlett.2018.10 CrossRefGoogle Scholar
  36. 36.
    Gonzalez-Ausejo J, Sanchez-Safont E, Maria Lagaron J, Olsson RT, Gamez-Perez J, Cabedo L (2017) Assessing the thermoformability of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(acid lactic) blends compatibilized with diisocyanates. Polym Test 62:235–245.  https://doi.org/10.1016/j.polymertesting.2017.06.026 CrossRefGoogle Scholar
  37. 37.
    Huang XX, Tao XM, Zhang ZH, Chen P (2017) Properties and performances of fabrics made from bio-based and degradable polylactide acid/poly (hydroxybutyrate-co-hydroxyvalerate) (PLA/PHBV) filament yarns. Text Res J 87(20):2464–2474.  https://doi.org/10.1177/0040517516671128 CrossRefGoogle Scholar
  38. 38.
    Akrami M, Ghasemi I, Azizi H, Karrabi M, Seyedabadi M (2016) A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends. Carbohydr Polym 144:254–262.  https://doi.org/10.1016/j.carbpol.2016.02.035 CrossRefPubMedGoogle Scholar
  39. 39.
    Ibrahim N, Ab Wahab MK, Uylan DN, Ismail H (2017) Physical and degradation properties of polylactic acid and thermoplastic starch blends—effect of citric acid treatment on starch structures. BioResources 12(2):3076–3087CrossRefGoogle Scholar
  40. 40.
    Fernandes TMD, Leite MCAM, de Sousa AMF, Furtado CRG, Escócio VA, da Silva ALN (2017) Improvement in toughness of polylactide/poly (butylene adipate-co-terephthalate) blend by adding nitrile rubber. Polym Bull 74(5):1713–1726CrossRefGoogle Scholar
  41. 41.
    Luzi F, Fortunati E, Jimenez A, Puglia D, Pezzolla D, Gigliotti G, Kenny JM, Chiralt A, Torre L (2016) Production and characterization of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres. Ind Crops Prod 93:276–289.  https://doi.org/10.1016/j.indcrop.2016.01.045 CrossRefGoogle Scholar
  42. 42.
    Supthanyakul R, Kaabbuathong N, Chirachanchai S (2017) Poly(L-lactide-b-butylene succinate-b-L-lactide) triblock copolymer: a multi-functional additive for PLA/PBS blend with a key performance on film clarity. Polym Degrad Stab 142:160–168.  https://doi.org/10.1016/j.polymdegradstab.2017.05.029 CrossRefGoogle Scholar
  43. 43.
    Hu X, Su T, Li P, Wang Z (2018) Blending modification of PBS/PLA and its enzymatic degradation. Polym Bull 75(2):533–546CrossRefGoogle Scholar
  44. 44.
    Ojijo V, Ray SS (2015) Super toughened biodegradable polylactide blends with non-linear copolymer interfacial architecture obtained via facile in-situ reactive compatibilization. Polymer 80:1–17.  https://doi.org/10.1016/j.polymer.2015.10.038 CrossRefGoogle Scholar
  45. 45.
    Pigatto C, Santos Almeida JH, Luiz Ornaghi H, Rodríguez AL, Mählmann CM, Amico SC (2012) Study of polypropylene/ethylene-propylene-diene monomer blends reinforced with sisal fibers. Polym Compos 33(12):2262–2270CrossRefGoogle Scholar
  46. 46.
    Liu L, Wang Y, Li Y, Wu J, Zhou Z, Jiang C (2009) Improved fracture toughness of immiscible polypropylene/ethylene-co-vinyl acetate blends with multiwalled carbon nanotubes. Polymer 50(14):3072–3078CrossRefGoogle Scholar
  47. 47.
    Samper-Madrigal M, Fenollar O, Dominici F, Balart R, Kenny J (2015) The effect of sepiolite on the compatibilization of polyethylene–thermoplastic starch blends for environmentally friendly films. J Mater Sci 50(2):863–872CrossRefGoogle Scholar
  48. 48.
    Pal P, Kundu MK, Malas A, Das CK (2014) Compatibilizing effect of halloysite nanotubes in polar–nonpolar hybrid system. J Appl Polym Sci 131(1):39587CrossRefGoogle Scholar
  49. 49.
    Si M, Araki T, Ade H, Kilcoyne A, Fisher R, Sokolov JC, Rafailovich MH (2006) Compatibilizing bulk polymer blends by using organoclays. Macromolecules 39(14):4793–4801CrossRefGoogle Scholar
  50. 50.
    Wang N, Yu J, Ma X (2007) Preparation and characterization of thermoplastic starch/PLA blends by one-step reactive extrusion. Polym Int 56(11):1440–1447CrossRefGoogle Scholar
  51. 51.
    Gonzalez-Ausejo J, Sanchez-Safont E, Maria Lagaron J, Balart R, Cabedo L, Gamez-Perez J (2017) Compatibilization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-poly(lactic acid) blends with diisocyanates. J Appl Polym Sci 134(20):44806.  https://doi.org/10.1002/app.44806 CrossRefGoogle Scholar
  52. 52.
    Sajna VP, Mohanty S, Nayak SK (2016) Effect of poly (lactic acid)-graft-glycidyl methacrylate as a compatibilizer on properties of poly (lactic acid)/banana fiber biocomposites. Polym Adv Technol 27(4):515–524.  https://doi.org/10.1002/pat.3698 CrossRefGoogle Scholar
  53. 53.
    Torres-Giner S, Montanes N, Boronat T, Quiles-Carrillo L, Balart R (2016) Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. Eur Polym J 84:693–707.  https://doi.org/10.1016/j.eurpolymj.2016.09.057 CrossRefGoogle Scholar
  54. 54.
    Darie-Nita RN, Vasile C, Irimia A, Lipsa R, Rapa M (2016) Evaluation of some eco-friendly plasticizers for PLA films processing. J Appl Polym Sci 133(13):11.  https://doi.org/10.1002/app.43223 CrossRefGoogle Scholar
  55. 55.
    Meng X, Bocharova V, Tekinalp H, Cheng S, Kisliuk A, Sokolov AP, Kunc V, Peter WH, Ozcan S (2018) Toughening of nanocelluose/PLA composites via bio-epoxy interaction: mechanistic study. Mater Des 139:188–197CrossRefGoogle Scholar
  56. 56.
    Yuryev Y, Mohanty AK, Misra M (2016) A new approach to supertough poly(lactic acid): a high temperature reactive blending. Macromol Mater Eng 301(12):1443–1453.  https://doi.org/10.1002/mame.201600242 CrossRefGoogle Scholar
  57. 57.
    Zhang K, Mohanty AK, Misra M (2012) Fully biodegradable and biorenewable ternary blends from polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties. ACS Appl Mater Interfaces 4(6):3091–3101.  https://doi.org/10.1021/am3004522 CrossRefPubMedGoogle Scholar
  58. 58.
    Carmona VB, Correa AC, Marconcini JM, Mattoso LHC (2015) Properties of a biodegradable ternary blend of thermoplastic starch (TPS), poly(epsilon-caprolactone) (PCL) and poly(lactic acid) (PLA). J Polym Environ 23(1):83–89.  https://doi.org/10.1007/s10924-014-0666-7 CrossRefGoogle Scholar
  59. 59.
    Ross S, Mahasaranon S, Ross GM (2015) Ternary polymer blends based on poly(lactic acid): effect of stereo-regularity and molecular weight. J Appl Polym Sci 132(14):8.  https://doi.org/10.1002/app.41780 CrossRefGoogle Scholar
  60. 60.
    Garcia-Campo MJ, Quiles-Carrillo L, Masia J, Reig-Perez MJ, Montanes N, Balart R (2017) Environmentally friendly compatibilizers from soybean oil for ternary blends of poly(lactic acid)-PLA, poly(epsilon-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB. Materials (Basel, Switzerland) 10(11):1339.  https://doi.org/10.3390/ma10111339 CrossRefPubMedCentralGoogle Scholar
  61. 61.
    García-Campo MJ, Boronat T, Quiles-Carrillo L, Balart R, Montanes N (2017) Manufacturing and characterization of toughened poly (lactic acid)(PLA) formulations by ternary blends with biopolyesters. Polymers 10(1):3CrossRefGoogle Scholar
  62. 62.
    Vijayarajan S, Selke SEM, Matuana LM (2014) Continuous blending approach in the manufacture of epoxidized soybean-plasticized poly(lactic acid) sheets and films. Macromol Mater Eng 299(5):622–630.  https://doi.org/10.1002/mame.201300226 CrossRefGoogle Scholar
  63. 63.
    Supthanyakul R, Kaabbuathong N, Chirachanchai S (2016) Random poly(butylene succinate-co-lactic acid) as a multi-functional additive for miscibility, toughness, and clarity of PLA/PBS blends. Polymer 105:1–9.  https://doi.org/10.1016/j.polymer.2016.10.006 CrossRefGoogle Scholar
  64. 64.
    Quiles-Carrillo L, Duart S, Montanes N, Torres-Giner S, Balart R (2018) Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Mater Des 140:54–63CrossRefGoogle Scholar
  65. 65.
    Signori F, Boggioni A, Righetti MC, Escrig Rondan C, Bronco S, Ciardelli F (2015) Evidences of transesterification, chain branching and cross-linking in a biopolyester commercial blend upon reaction with dicumyl peroxide in the melt. Macromol Mater Eng 300(2):153–160.  https://doi.org/10.1002/mame.201400187 CrossRefGoogle Scholar
  66. 66.
    Ojijo V, Ray SS, Sadiku R (2012) Role of specific interfacial area in controlling properties of immiscible blends of biodegradable polylactide and poly (butylene succinate)-co-adipate. ACS Appl Mater Interfaces 4(12):6689–6700.  https://doi.org/10.1021/am301842e CrossRefGoogle Scholar
  67. 67.
    Ni CY, Luo RC, Xu KT, Chen GQ (2009) Thermal and crystallinity property studies of poly (L-Lactic Acid) blended with oligomers of 3-hydroxybutyrate or dendrimers of hydroxyalkanoic acids. J Appl Polym Sci 111(4):1720–1727.  https://doi.org/10.1002/app.29182 CrossRefGoogle Scholar
  68. 68.
    da Silva HSP, Ornaghi HL Jr, Santos Almeida JH Jr, Zattera AJ, Campos Amico S (2014) Mechanical behavior and correlation between dynamic fragility and dynamic mechanical properties of curaua fiber composites. Polym Compos 35(6):1078–1086Google Scholar
  69. 69.
    Júnior JHSA, Júnior HLO, Amico SC, Amado FDR (2012) Study of hybrid intralaminate curaua/glass composites. Mater Des 42:111–117CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Tecnología de Materiales (ITM)Universitat Politècnica de València (UPV)AlcoySpain

Personalised recommendations