Advertisement

Polymer Bulletin

, Volume 76, Issue 4, pp 1651–1674 | Cite as

3-Aminopropyltriethoxysilane-mediated (phenoxy-imine) polymers: synthesis and characterization

  • İsmet KayaEmail author
  • Mihriban Esma Boz
  • Feyza Kolcu
Original Paper
  • 101 Downloads

Abstract

3-Aminopropyltriethoxysilane (3-APTES)-functionalized phenoxy-imine polymers exhibiting enhanced thermal properties have been synthesized by oxidative polycondensation using 4-hydroxybenzaldehyde, 2-hydroxy-3-methoxybenzaldehyde, 2-hydroxy-1-naphthaldehyde, 2-hydroxybenzaldehyde and 3,4-dihydroxy benzaldehyde; subsequently, the polymerized aldehydes polymers were grafted by integrating 3-APTES to form poly(imine)s. All compounds characterized by FT-IR, UV–Vis, 1H-NMR and XPS analyses revealed the existence of Si–O–C bonds in the silanized compounds. Thermal behavior (TG–DTA–DSC) of the synthesized polymers has been determined using thermogravimetric and differential scanning calorimetry techniques. The thermal stability of the phenoxy-imine polymers was enhanced significantly by incorporation of 3-APTES into the polymer backbone. Size exclusion chromatography provided information about the number average molecular weight (Mn), weight average molecular weight (Mw) and polydispersity index values of phenoxy-imine polymers. Photoluminescence and morphologic properties of the polymers at different amplifications were analyzed. The results of optical, thermal and electrical conductivity measurements indicated that the phenoxy-imine polymers were crucial due to their high electrical conductivity and heat retardancy as well as the lowest band gap for P3 derived from 2-hydroxy-1-naphthaldehyde and 3-APTES.

Graphical abstract

3-Aminopropyltriethoxysilane-functionalized phenoxy-imine polymers were synthesized using the polymerized aldehydes. The results of optical, thermal and electrical conductivity measurements indicated that the phenoxy-imine polymers were crucial due to their highest electrical conductivity and heat retardancy as well as the lowest band gap for P3 derived from 2-hydroxy-1-naphthaldehyde and 3-aminopropyltriethoxysilane.

Keywords

Phenoxy-imine polymers Oxidative polycondensation Electrical conductivity SEM 

References

  1. 1.
    Chiang CK, Fincher CR, Park YW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, MacDiarmid AG (1977) Electrical conductivity in doped polyacetylene. Phys Rev Lett 39(17):1098–1101CrossRefGoogle Scholar
  2. 2.
    Gal YS, Choi SK (1993) Electrical conductivity and spectral properties of iodine-doped poly(2-ethynylpyridine). J Appl Polym Sci 50(4):601–606CrossRefGoogle Scholar
  3. 3.
    Park JW, Lee JH, Cho HN, Cho HN, Choi SK (1993) Synthesis and photoconductivity of a poly(1,6-heptadiyne) derivative containing a carbazole moiety. Macromolecules 26(5):1191–1193CrossRefGoogle Scholar
  4. 4.
    Yoshino K, Yoshiimoto K, Morita S, Kawai T, Kim SH, Kang KL, Choi SK (1995) Electrical and electrochemical properties of polyacetylene derivatives with pendant cationic group. Synth Met 69:81–82CrossRefGoogle Scholar
  5. 5.
    Gupta ND, Maity S, Chattopadhyay KK (2014) Field emission enhancement of polypyrrole due to band bending induced tunnelling in polypyrrole-carbon nanotubes nanocomposite. J Ind Eng Chem 20(5):3208–3213CrossRefGoogle Scholar
  6. 6.
    Hwang I, Scholes GD (2011) Electronic energy transfer and quantum-coherence in π-conjugated polymers. Chem Mater 23(3):610–620CrossRefGoogle Scholar
  7. 7.
    Masuda T, Isobe E, Higashimura T, Takada K (1983) Poly[1-(trimethylsilyl)-1-propyne]: a new high polymer synthesized with transition-metal catalysts and characterized by extremely high gas permeability. J Am Chem Soc 105(25):7473–7474CrossRefGoogle Scholar
  8. 8.
    Aoki T, Fukuda T, Shinohara KI, Kaneko T, Teraguchi M, Yagi M (2004) Synthesis of chiral helical poly[p-(oligopinanylsiloxanyl)phenylacetylene]s and enantioselective permeability of their membranes. J Polym Sci A: Polym Chem 42(18):4502–4517CrossRefGoogle Scholar
  9. 9.
    Lee HJ, Oh JM, Choi SJ, Kim HK, Choi SK (1994) Phosphonated poly(1,6-heptadiyne) derivatives prepared by metathesis polymerization for nonlinear optics. Polym Bull 32(4):433–438CrossRefGoogle Scholar
  10. 10.
    Lee HJ, Won YH, Kang SJ, Choi SK, Kim HK (1996) Synthesis and characterization of NLO chromophores bearing poly(1,6-heptadiyne)s for electro-optic application. J Polym Sci A: Polym Chem 34(12):2333–2340CrossRefGoogle Scholar
  11. 11.
    Dufresne G, Bouchard J, Belletete M, Durocher G, Leclerc M (2000) Thermochromic and solvatochromic conjugated polymers by design. Macromolecules 33(22):8252–8257CrossRefGoogle Scholar
  12. 12.
    Chen J, Xie Z, Lam JWY, Law CCW, Tang BZ (2003) Silole-containing polyacetylenes. Synthesis, thermal stability, light emission, nanodimensional aggregation, and restricted intramolecular rotation. Macromolecules 36(4):1108–1117CrossRefGoogle Scholar
  13. 13.
    Zhou C, Gao Y, Chen D (2012) Investigation of pyridine/propargyl bromide reaction and strong fluorescence enhancements of the resultant poly(propargyl pyridinium bromide). J Phys Chem B 116(37):11552–11559CrossRefGoogle Scholar
  14. 14.
    Tada K, Hidayat R, Hirohata M, Teraguchi M, Masuda T, Yoshino K (1996) Optical properties and blue and green electroluminescence in soluble disubstituted acetylene polymers. Jpn J Appl Phys 35(9A):L1138–L1141CrossRefGoogle Scholar
  15. 15.
    Jung SJ, Cho YR, Jin SH, Kim SC, Shin WS, Lee JW, Gal YS (2007) Synthesis and characterization of PPV-based light-emitting copolymer with alkylsilylphenyloxy pendant group for light-emitting diode applications. Curr Appl Phys 7(4):375–379CrossRefGoogle Scholar
  16. 16.
    Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB (1990) Light-emitting diodes based on conjugated polymers. Nature 347:539–541CrossRefGoogle Scholar
  17. 17.
    Jin SH, Kim MY, Kim JY, Lee K, Gal YS (2004) High-efficiency poly(p-phenylenevinylene)-based copolymers containing an oxadiazole pendant group for light-emitting diodes. J Am Chem Soc 126(8):2474–2480CrossRefGoogle Scholar
  18. 18.
    Lee CW, Kim OY, Lee JY (2014) Organic materials for organic electronic devices. J Ind Eng Chem 20(4):1198–1208CrossRefGoogle Scholar
  19. 19.
    Cho W, Lee JW, Gal YS, Kim MR, Jin SH (2014) Improved power conversion efficiency of dye-sensitized solar cells using side chain liquid crystal polymer embedded in polymer electrolytes. Mater Chem Phys 143(3):904–907CrossRefGoogle Scholar
  20. 20.
    Jin SH, Yoo H, Lee C, Saravanan C, Gal YS, Lee JW (2014) Synthesis and characterization of indolo[3,2-b] indole based copolymers for bulk heterojunction polymer solar cell. Mol Cryst Liq Cryst 597(1):135–145CrossRefGoogle Scholar
  21. 21.
    McQuade DT, Pullen AE, Swager TM (2000) Conjugated polymer-based chemical sensors. Chem Rev 100(7):2537–2574CrossRefGoogle Scholar
  22. 22.
    Ragupathy D, Lee SC, Al-Deyab SS, Rajendren A (2014) Electrochemical synthesis of a novel poly(2,5-dimethoxy aniline) nanorod for ultrasensitive glucose biosensor application. J Ind Eng Chem 20(3):930–936CrossRefGoogle Scholar
  23. 23.
    Duan X, Liu L, Feng F, Wang S (2010) Cationic conjugated polymers for optical detection of DNA methylation, lesions and single nucleotide polymorphisms. Acc Chem Res 43:260–270CrossRefGoogle Scholar
  24. 24.
    McGehee MD, Heeger AJ (2000) Semiconducting (conjugated) polymers as materials for solid-state. Adv Mater 12(22):1655–1668CrossRefGoogle Scholar
  25. 25.
    Rostotskiy GA, Kulikova AK (1984) Russia Patent 1,073,239 Bull No 6Google Scholar
  26. 26.
    Anyunene IA, Baltushnikas AN, Liogony BI, Ragimov AV (1987) Investigation of thermostability of polyamide stabilized by polybetanapthol. In: Abstracts of 26th republic conference polymer materials and their investigation, Vulnus, p 56Google Scholar
  27. 27.
    Ionova ED, Asaturov SA, Ragimov AV (1981) Pat Russia No 841,328Google Scholar
  28. 28.
    Ragimov AV, Babaev AA, Berlin AA (1976) Pat Russia No 513,993 Bull No 18Google Scholar
  29. 29.
    Miroshin NF, Chubukov VN, Majer LA, Akutin MS (1973) Pat Russia No 363,720 Bull No 4Google Scholar
  30. 30.
    Vermishyan GA, Akopyan SV (1979) Pat Russia No 686,432Google Scholar
  31. 31.
    Ragimov GA, Mamedov AG, Ragimov AV (1981) Pat Russia No 888,506Google Scholar
  32. 32.
    Jarzabek B, Weszka J, Hajduka B, Jurusik J, Domanski M, Cisowski J (2011) A study of optical properties and annealing effect on the absorption edge of pristine- and iodine-doped polyazomethine thin films. Synth Met 161(11–12):969–975CrossRefGoogle Scholar
  33. 33.
    Iwan A, Palewicz M, Sikora A, Chmielowiec J, Hreniak A, Pasciak G, Bílski P (2010) Aliphatic–aromatic poly(azomethine)s with ester groups as thermotropic materials for opto(electronic) applications. Synth Met 160(17–18):1856–1867CrossRefGoogle Scholar
  34. 34.
    Plueddemann EP (1991) Silane coupling agents, 2nd edn. Plenum Press, New YorkCrossRefGoogle Scholar
  35. 35.
    Kim JK, Mai YW (1992) Interfaces in Composites. In: Cahn RW, Haasen P, Kramer EJ (eds) Material science and technology: a comprehensive treatment. Weinheim, VCH, New York, pp 239–289Google Scholar
  36. 36.
    Plueddemann EP (1992) Reminiscing on silane coupling agents. In: Mittal KL (ed) Silanes and other coupling agents. VSP, Utrecht, pp 3–19Google Scholar
  37. 37.
    Zisman WA (1969) Surface chemistry of plastics reinforced by strong fibers. Ind Eng Chem Prod Res Dev 8(2):98–111CrossRefGoogle Scholar
  38. 38.
    Ishida H (1984) A review of recent progress in the studies of molecular and microstructure of coupling agents and their functions in composites, coatings and adhesive joints. Polym Comp 5:101–123CrossRefGoogle Scholar
  39. 39.
    Kneuer C, Sameti M, Haltner EG, Schiestel T, Schirra H, Schmidt H, Lehr CM (2000) Silica nanoparticles modified with aminosilanes as carriers for plasmid DNA. Int J Pharm 196(2):257–261CrossRefGoogle Scholar
  40. 40.
    Roy I, Ohulchanskyy TY, Bharali DJ, Pudavar HE, Mistretta RA, Kaur N, Prasad PN (2005) Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery. Proc Natl Acad Sci 102(2):279–284CrossRefGoogle Scholar
  41. 41.
    Chen CF, Tzeng SD, Lin MH, Gwo S (2006) Electrostatic assembly of gold colloidal nanoparticles on organosilane monolayers patterned by microcontact electrochemical conversion. Langmuir 22(18):7819–7824CrossRefGoogle Scholar
  42. 42.
    Enders D, Nagao T, Pucci A, Nakayama T (2006) Reversible adsorption of Au nanoparticles on SiO2/Si: an in situ ATR-IR study. Surf Sci 600(6):L71–l75CrossRefGoogle Scholar
  43. 43.
    Cass T, Ligler FS (1998) Immobilized biomolecules in analysis: a practical approach. Oxford University Press, New YorkGoogle Scholar
  44. 44.
    Reddy KR, Park W, Sin BC, Noh J, Lee Y (2009) Synthesis of electrically conductive and supermagnetic monodispersed iron-oxide-conjugated polymer composite nanoparticles by in situ chemical oxidative polymerization. J Colloid Interface Sci 335(1):34–39CrossRefGoogle Scholar
  45. 45.
    Zhang YP, Lee SH, Reddy KR, Gopalan AI, Lee KS (2006) Synthesis and characterization of core-shell SiO2 nanoparticles/poly(3-aminophenylboronic acid) composites. J Appl Polym Sci 104(4):2473–2750Google Scholar
  46. 46.
    Reddy KR, Sin BC, Ryu KS, Kim JC (2009) Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synth Met 159(7–8):595–603CrossRefGoogle Scholar
  47. 47.
    Ojani R, Raoof JB, Zamani S (2010) A novel sensor for cephalosporins based on electrocatalytic oxidation by poly(o-anisidine)/SDS/Ni modified carbon paste electrode. Talanta 81(4–5):1522–1528CrossRefGoogle Scholar
  48. 48.
    Reddy KR, Lee KP, Ju Y, Lee Y (2008) Self-assembly and graft polymerization route to monodispersed Fe3O4@SiO2-polyaniline core-shell composite nanoparticles: physical properties. J Nanosci Nanotechnol 8(11):5632–5639CrossRefGoogle Scholar
  49. 49.
    Kaya İ, Şenol D (2003) Synthesis and characterization of oligo-2-hydroxy-1-naphthaldehyde and its Schiff base oligomers. J Appl Polym Sci 90(2):442–450CrossRefGoogle Scholar
  50. 50.
    Kaya İ, Vilayetoglu AR, Mart H (2001) The synthesis and properties of oligosalicylaldehyde and its Schiff base oligomers. Polymer 42(11):4859–4865CrossRefGoogle Scholar
  51. 51.
    Diaz FR, Moreno J, Tagle LH, East GA, Radic D (1999) Synthesis, characterization and electrical properties of polyamines derived from selenophene. Synth Met 100(2):187–193CrossRefGoogle Scholar
  52. 52.
    Kaya İ, Çıtakoğlu N, Kolcu F (2017) Synthesis and characterization of semi conductive, thermally stable imine polymers containing methyl silane group. Polym Bull 74(4):1343–1369CrossRefGoogle Scholar
  53. 53.
    Anderson DR (1974) Infrared, Raman, and ultraviolet spectroscopy, Chapter 10. In: Smith AL (ed) Analysis of silicones. Wiley-Interscience, New YorkGoogle Scholar
  54. 54.
    Bellamy LJ (1975) The infra-red spectra of complex molecules, 3rd edn. Chapman and Hall, LondonCrossRefGoogle Scholar
  55. 55.
    Lopez-Periago AM, Sandoval W, Domingo C (2014) Chemical modification of nanometric TiO2 particles by anchoring functional silane molecules in supercritical CO2. Appl Surf Sci 296:114–123CrossRefGoogle Scholar
  56. 56.
    Vendetti I, Fratoddi I, Palazzessi C, Prosposito P, Casalboni C, Cametti C, Battachio C, Polzonetti G, Russo MVJ (2010) Self-assembled nanoparticles of functional copolymers for photonic applications. J Colloid Interface Sci 348:424–430CrossRefGoogle Scholar
  57. 57.
    Louette P, Bodino F, Pireaux JJ (2005) Poly(ethylene terephthalate) (PET) XPS reference core level and energy loss spectra. Surf Sci Spectra 12(1):54CrossRefGoogle Scholar
  58. 58.
    Colladet K, Nicolas M, Goris I, Lutsen I, Vanderzande D (2004) Low-band gap polymers for photovoltaic applications. Thin Solid Films 451:7–11CrossRefGoogle Scholar
  59. 59.
    Grigoras M, Catanescu CO (2004) Imine oligomers and polymers. J Macromol Sci Pol R 44:131–173CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Polymer Synthesis and Analysis Laboratory, Department of ChemistryÇanakkale Onsekiz Mart UniversityÇanakkaleTurkey
  2. 2.Department of Chemistry and Chemical Processing Technologies, Lapseki Vocational SchoolÇanakkale Onsekiz Mart UniversityÇanakkaleTurkey

Personalised recommendations