Screening of crystalline species and enhanced nucleation of enantiomeric poly(lactide) systems by melt-quenching

  • Hideto Tsuji
  • Yuki Arakawa
  • Nobutsugu Matsumura
Original Paper


The effects of quenching from the melt on the isothermal crystallization of star-shaped four-armed stereo diblock poly(lactide) (4-LD) and four-armed poly(l-lactide) (4-L) polymers with different l-lactyl unit contents as low crystallizability models for the stereoblock copolymers or blends of poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) were investigated. Quenching induced both stereocomplex (SC)- and homo-crystallization of non-equimolar 4-LD polymers with l-lactyl unit contents around 30 and 70%, wherein both SC- and homo-crystallization were highly prohibited in other procedures, and enhanced nucleation of 4-LD and 4-L polymers compared to the samples without quenching, resulting in formation of a large number of small-sized crystalline assemblies. The results obtained in the present study strongly suggest that the procedure of isothermal crystallization after quenching from the melt is expected to be utilized for screening the crystallizability of SC- and homo-crystallites in various types of block copolymers and blends of PLLA and PDLA and for enhancing nucleation or formation of dense crystalline structure.


Enhanced nucleation Star-shaped poly(lactic acid) Stereo block poly(lactic acid) Stereocomplex crystallization Homo-crystallization 



This research was supported by JSPS KAKENHI Grant Number 16K05912.


  1. 1.
    Slager J, Domb AJ (2003) Biopolymer stereocomplexes. Adv Drug Deliv Rev 55:549–583CrossRefPubMedGoogle Scholar
  2. 2.
    Tsuji H (2005) Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5:569–597CrossRefPubMedGoogle Scholar
  3. 3.
    Pan P, Inoue Y (2009) Polymorphism and isomorphism in biodegradable polyesters. Prog Polym Sci 34:605–640CrossRefGoogle Scholar
  4. 4.
    Auras R, Lim L-T, Selke SEM, Tsuji H (eds) (2010) Poly(lactic acid): synthesis, structures, properties, processing, and applications (Wiley series on polymer engineering and technology). Wiley, New JerseyGoogle Scholar
  5. 5.
    Tsuji H (2016) Poly(lactic acid) stereocomplexes: a decade of progress. Adv Drug Deliv Rev 107:97–135CrossRefPubMedGoogle Scholar
  6. 6.
    Tsuji H, Hyon SH, Ikada Y (1991) stereocomplex formation between enantiomeric poly(lactic acid)s. 3. calorimetric studies on blend films cast from dilute solution. Macromolecules 24:5651–5656CrossRefGoogle Scholar
  7. 7.
    Tsuji H, Ikada Y, Hyon SH, Kimura Y, Kitao T (1994) Stereocomplex formation between enantiomeric poly(lactic acid). viii. complex fibers spun from mixed solution of poly(d-lactic acid) and poly(l-lactic acid). J Appl Polym Sci 51:337–344CrossRefGoogle Scholar
  8. 8.
    Takasaki M, Ito H, Kikutani T (2003) Development of stereocomplex crystal of polylactide in high-speed melt spinning and subsequent drawing and annealing processes. J Macromol Sci Phys 42B(3–4 SPEC.):403–420CrossRefGoogle Scholar
  9. 9.
    Kang N, Perron M-È, Prud’homme RE, Zhang Y, Gaucher G, Leroux J-C (2005) stereocomplex block copolymer micelles: core–shell nanostructures with enhanced stability. Nano Lett 5:315–319CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang J, Tashiro K, Tsuji H, Domb AJ (2007) Investigation of phase transitional behavior of poly(l-lactide)/poly(d-lactide) blend used to prepare the highly-oriented stereocomplex. Macromolecules 40:1049–1054CrossRefGoogle Scholar
  11. 11.
    Fujita M, Sawayanagi T, Abe H, Tanaka T, Iwata T, Ito K, Fujisawa T, Maeda M (2008) Stereocomplex formation through reorganization of poly(l-lactic acid) and poly(d-lactic acid) crystals. Macromolecules 41:2852–2858CrossRefGoogle Scholar
  12. 12.
    Tsuji H, Nakano M, Hashimoto M, Takashima K, Katsura S, Mizuno A (2006) Electrospinning of poly(lactic acid) stereocomplex nanofibers. Biomacromol 7:3316–3320CrossRefGoogle Scholar
  13. 13.
    Ishii D, Ying TH, Mahara A, Murakami S, Yamaoka T, Lee W, Iwata T (2009) In vivo tissue response and degradation behavior of PLLA and stereocomplexed PLA nanofibers. Biomacromol 10:237–242CrossRefGoogle Scholar
  14. 14.
    Spasova M, Manolova N, Paneva D, Mincheva R, Dubois P, Rashkov I, Maximova V, Danchev D (2010) Polylactide stereocomplex-based electrospun materials possessing surface with antibacterial and hemostatic properties. Biomacromol 11:151–159CrossRefGoogle Scholar
  15. 15.
    Tsuji H, Tsuruno T (2010) Water vapor permeability of poly(l-lactide)/poly(d-lactide) stereocomplexes. Macromol Mater Eng 295:709–715CrossRefGoogle Scholar
  16. 16.
    Furuhashi Y, Yoshie N (2012) Stereocomplexation of solvent-cast poly(lactic acid) by addition of non-solvents. Polym Int 6:301–306CrossRefGoogle Scholar
  17. 17.
    Purnama P, Kim SH (2010) Stereocomplex formation of high-molecular-weight polylactide using supercritical fluid. Macromolecules 43:1137–1142CrossRefGoogle Scholar
  18. 18.
    Tsuji H, Yamamoto S (2011) Enhanced stereocomplex crystallization of biodegradable enantiomeric poly(lactic acid)s by repeated casting. Macromol Mater Eng 296:583–589CrossRefGoogle Scholar
  19. 19.
    Yang C-F, Huang Y-F, Ruan J, Su A-C (2012) Extensive development of precursory helical pairs prior to formation of stereocomplex crystals in racemic polylactide melt mixture. Macromolecules 45:872–878CrossRefGoogle Scholar
  20. 20.
    Tsuji H, Bouapao L (2012) Stereocomplex formation between poly(l-lactic acid) and poly(d-lactic acid) with disproportionately low and high molecular weights from the melt. Polym Int 61:442–450CrossRefGoogle Scholar
  21. 21.
    Akagi T, Fujiwara T, Akashi M (2012) Rapid fabrication of polylactide stereocomplex using layer-by-layer deposition by inkjet printing. Angew Chem Int Ed 51:5493–5496CrossRefGoogle Scholar
  22. 22.
    Purnama P, Kim SH (2012) Rapid stereocomplex formation of polylactide using supercritical fluid technology. Polym Int 61:939–942CrossRefGoogle Scholar
  23. 23.
    Andersson SR, Hakkarainen M, Inkinen S, Södergård A, Albertsson A-C (2012) Customizing the hydrolytic degradation rate of stereocomplex PLA through different PDLA architectures. Biomacromol 13:1212–1222CrossRefGoogle Scholar
  24. 24.
    Narita J, Katagiri M, Tsuji H (2013) Highly enhanced accelerating effect of melt-recrystallized stereocomplex crystallites on poly(l-lactic acid) crystallization, 2—effects of poly(d-lactic acid) concentration. Macromol Mater Eng 298:270–282CrossRefGoogle Scholar
  25. 25.
    Li Y, Han C, Zhang X, Dong Q, Dong L (2013) Effects of molten poly(d, l-lactide) on nonisothermal crystallization in stereocomplex of poly(l-lactide) with poly(d-lactide). Thermochim Acta 573:193–199CrossRefGoogle Scholar
  26. 26.
    Ajiro H, Hsiao Y-J, Tran HT, Fujiwara T, Akashi M (2013) Thermally stabilized poly(lactide)s stereocomplex with bio-based aromatic groups at both initiating and terminating chain ends. Macromolecules 46:5150–5156CrossRefGoogle Scholar
  27. 27.
    Marubayashi H, Nobuoka T, Iwamoto S, Takemura A, Iwata T (2013) Atomic force microscopy observation of polylactide stereocomplex edge-on crystals in thin films: effects of molecular weight on lamellar curvature. ACS Macro Lett 2:355–360CrossRefGoogle Scholar
  28. 28.
    Tsuji H, Tashiro K, Bouapao L, Hanesaka M (2013) Synchronous and separate homo-crystallization of enantiomeric poly(l-lactic acid)/poly(d-lactic acid) blends. Polymer 53:747–754CrossRefGoogle Scholar
  29. 29.
    Na B, Zhu J, Lv R, Ju Y, Tian R, Chen B (2014) Stereocomplex formation in enantiomeric polylactides by melting recrystallization of homocrystals: crystallization kinetics and crystal morphology. Macromolecules 47:347–352CrossRefGoogle Scholar
  30. 30.
    Wang X, Prud’homme RE (2014) Dendritic crystallization of poly(l-lactide)/poly(d-lactide) stereocomplexes in ultrathin films. Macromolecules 47:668–676CrossRefGoogle Scholar
  31. 31.
    Hemmi K, Matsuba G, Tsuji H, Kawai T, Kanaya T, Toyohara K, Oda A, Endou K (2014) Precursors in stereo-complex crystals of poly(l-lactic acid)/poly(d-lactic acid) blends under shear flow. J Appl Cryst 47:14–21CrossRefGoogle Scholar
  32. 32.
    Song Y, Zhang X, Yin Y, de Vos S, Wang R, Joziasse CAP, Liu G, Wang D (2015) Enhancement of stereocomplex formation in poly(l-lactide)/poly(d-lactide) mixture by shear. Polymer 72:185–192CrossRefGoogle Scholar
  33. 33.
    Yui N, Dijkstra PJ, Feijen J (1990) Stereo block copolymers of l- and d-lactides. Makromol Chem 191:481–488CrossRefGoogle Scholar
  34. 34.
    Spassky N, Wisniewski M, Pluta C, Le Borgne A (1996) Highly stereoelective polymerization of rac-(d, l)-lactide with a chiral Schiff’s base/aluminium alkoxide initiator. Makromol Chem Phys 197:2627–2637CrossRefGoogle Scholar
  35. 35.
    Spinu M, Jackson C, Keating MY, Gardner KH (1996) Material design in poly(lactic acid) systems: block copolymers, star homo- and copolymers, and stereocomplexes. J Macromol Sci A Pure Appl Chem 33:1497–1530CrossRefGoogle Scholar
  36. 36.
    Sarasua J-R, Prud’homme RE, Wisniewski M, Le Borgne A, Spassky N (1998) Crystallization and melting behavior of polylactides. Macromolecules 31:3895–3905CrossRefGoogle Scholar
  37. 37.
    Ovitt TM, Coates GW (2002) Stereochemistry of lactide polymerization with chiral catalysts: new opportunities for stereocontrol using polymer exchange mechanisms. J Am Chem Soc 124:1316–1326CrossRefPubMedGoogle Scholar
  38. 38.
    Li L, Zhong Z, De Jeu WH, Dijkstra PJ, Feijen J (2004) Crystal structure and morphology of poly(l-lactide-b-d-lactide) diblock copolymers. Macromolecules 37:8641–8646CrossRefGoogle Scholar
  39. 39.
    Hu J, Tang Z, Qiu X, Pang X, Yang Y, Chen X, Jing X (2005) Formation of flower- or cake-shaped stereocomplex particles from the stereo multiblock copoly(rac-lactide)s. Biomacromol 6:2843–2850CrossRefGoogle Scholar
  40. 40.
    Tang Z, Yang Y, Pang X, Hu J, Chen X, Hu N, Jing X (2005) Controlled and stereospecific polymerization of rac-lactide with a single-site ethyl aluminum and alcohol initiating system. J Appl Polym Sci 98:102–108CrossRefGoogle Scholar
  41. 41.
    Fukushima K, Furuhashi Y, Sogo K, Miura S, Kimura Y (2005) Stereoblock Poly(lactic acid): synthesis via solid-state polycondensation of a stereocomplexed mixture of poly(l-lactic acid) and poly(d-lactic acid). Macromol Biosci 5:21–29CrossRefPubMedGoogle Scholar
  42. 42.
    Fukushima K, Kimura Y (2008) An efficient solid-state polycondensation method for synthesizing stereocomplexed poly(lactic acid)s with high molecular weight. J Polym Sci A Polym Chem 46:3714–3722CrossRefGoogle Scholar
  43. 43.
    Kim SH, Nederberg F, Zhang L, Wade CG, Waymouth RM, Hedrick JL (2008) Hierarchical assembly of nanostructured organosilicate networks via stereocomplexation of block copolymers. Nano Lett 8:294–301CrossRefPubMedGoogle Scholar
  44. 44.
    Nederberg F, Appel E, Tan JPK, Sung HK, Fukushima K, Sly J, Miller RD, Waymouth RM, Yang YY, Hedrick JL (2009) Monolayered organosilicate toroids and related structures: a phase diagram for templating from block copolymers. Biomacromol 10:1460–1468CrossRefGoogle Scholar
  45. 45.
    Hirata M, Kobayashi K, Kimura Y (2010) Synthesis and properties of high-molecular-weight stereo di-block polylactides with nonequivalent d/l ratios. J Polym Sci A Polym Chem 48:794–801CrossRefGoogle Scholar
  46. 46.
    Sugai N, Yamamoto T, Tezuka Y (2012) Synthesis of orientationally isomeric cyclic stereoblock polylactides with head-to-head and head-to-tail linkages of the enantiomeric segments. ACS Macro Lett 1:902–906CrossRefGoogle Scholar
  47. 47.
    Tsuji H, Wada T, Sakamoto Y, Sugiura Y (2010) Stereocomplex crystallization and spherulite growth behavior of poly(l-lactide)-b-poly(d-lactide) stereodiblock copolymers. Polymer 51:4937–4947CrossRefGoogle Scholar
  48. 48.
    Masutani K, Lee CW, Kimura Y (2012) Synthesis and thermomechanical properties of stereo triblock polylactides with nonequivalent block compositions. Macromol Chem Phys 213:695–704CrossRefGoogle Scholar
  49. 49.
    Masutani K, Lee CW, Kimura Y (2012) Synthesis of stereo multiblock polylactides by dual terminal couplings of poly-L-lactide and poly-D-lactide prepolymers: a new route to high-performance polylactides. Polymer 53:6053–6062CrossRefGoogle Scholar
  50. 50.
    Rahaman MH, Tsuji H (2012) Synthesis and characterization of stereo multiblock poly(lactic acid)s with different block lengths by melt polycondensation of poly(l-lactic acid)/poly(d-lactic acid) blends. Macromol React Eng 6:446–457CrossRefGoogle Scholar
  51. 51.
    Rahaman MH, Tsuji H (2013) Isothermal crystallization and spherulite growth behavior of stereo multiblock poly(lactic acid)s: effects of block length. J Appl Polym Sci 129:2502–2517CrossRefGoogle Scholar
  52. 52.
    Masutani K, Lee CW, Kimura Y (2013) Synthesis and properties of stereo di- and tri-block polylactides of different block compositions by terminal diels-alder coupling of poly-l-lactide and poly-d-lactide prepolymers. Polym J 45:427–435CrossRefGoogle Scholar
  53. 53.
    Rahaman MH, Tsuji H (2013) Hydrolytic degradation behavior of stereo multiblock and diblock poly(lactic acid)s: effects of block lengths. Polym Degrad Stab 98:709–719CrossRefGoogle Scholar
  54. 54.
    Tsuji H, Tajima T (2014) Relatively short poly(d-lactide) segments as intra-crystallization-accelerating moieties in stereo diblock poly(lactide)s. Macromol Mater Eng 299:430–435CrossRefGoogle Scholar
  55. 55.
    Tsuji H, Tajima T (2014) Crystallization behavior of stereo diblock poly(lactide)s with relatively short poly(d-lactide) segment from partially melted state. Macromol Mater Eng 299:1089–1105Google Scholar
  56. 56.
    Sugai N, Asai S, Tezuka Y, Yamamoto T (2015) Photoinduced topological transformation of cyclized polylactides for switching the properties of homocrystals and stereocomplexes. Polym Chem 6:3591–3600CrossRefGoogle Scholar
  57. 57.
    Tsuji H, Tajima T (2015) Non-Isothermal crystallization behavior of stereo diblock polylactides with relatively short poly(d-lactide) segments from the melt. Polym Int 64:54–65CrossRefGoogle Scholar
  58. 58.
    Tsuji H, Noda S, Kimura T, Sobue T, Arakawa Y (2017) Configurational molecular glue: one optically active polymer attracts two oppositely configured optically active polymers. Sci Rep 7:45170CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Zhang F, Wang H-W, Tominaga K, Hayashi M, Lee S, Nishino T (2016) Elucidation of chiral symmetry breaking in a racemic polymer system with terahertz vibrational spectroscopy and crystal orbital density functional theory. J Phys Chem Lett 7:4671–4676CrossRefPubMedGoogle Scholar
  60. 60.
    Tashiro K, Wang H, Kouno N, Koshobu J, Watanabe K (2017) Confirmation of the x-ray-analyzed heterogeneous distribution of the PDLA and PLLA chain stems in the crystal lattice of poly(lactic acid) stereocomplex on the basis of the vibrational circular dichroism IR spectral measurement. Macromolecules 50:8066–8071CrossRefGoogle Scholar
  61. 61.
    Tashiro K, Kouno N, Wang H, Tsuji H (2017) Crystal structure of poly(lactic acid) stereocomplex: random packing model of PDLA and PLLA chains as studied by x-ray diffraction analysis. Macromolecules 50:8048–8065CrossRefGoogle Scholar
  62. 62.
    Inkinen S, Stolt M, Södergård A (2011) Effect of blending ratio and oligomer structure on the thermal transitions of stereocomplexes consisting of a d-lactic acid oligomer and poly(l-lactide). Polym Adv Tech 22:1658–1664CrossRefGoogle Scholar
  63. 63.
    Hiemstra C, Zhong Z, Dijkstra PJ, Feijen J (2005) Stereocomplex mediated gelation of PEG-(PLA)2 and PEG-(PLA)8 block copolymers. Macromol Symp 224:119–131CrossRefGoogle Scholar
  64. 64.
    Biela T, Duda A, Penczek S (2006) Enhanced melt stability of star-shaped stereocomplexes as compared with linear stereocomplexes. Macromolecules 39:3710–3713CrossRefGoogle Scholar
  65. 65.
    Nagahama K, Fujiura K, Enami S, Ouchi T, Ohya Y (2008) Irreversible temperature-responsive formation of high-strength hydrogel from an enantiomeric mixture of starburst triblock copolymers consisting of 8-arm PEG and PLLA or PDLA. J Polym Sci A Polym Chem 46:6317–6332CrossRefGoogle Scholar
  66. 66.
    Nagahama K, Nishimura Y, Ohya Y, Ouchi T (2007) Impacts of stereoregularity and stereocomplex formation on physicochemical, protein adsorption and cell adhesion behaviors of star-shaped 8-arms poly(ethylene glycol)–poly(lactide) block copolymer films. Polymer 48:2649–2658CrossRefGoogle Scholar
  67. 67.
    Łukaszczyk J, Jelonek P, Trzebicka B, Domb AJ (2010) Stereocomplexes formation from enantiomeric star-shaped block copolymers of ε-caprolactone and lactide. E-Polymers 10:073CrossRefGoogle Scholar
  68. 68.
    Tan BH, Hussain H, Lin TT, Chua YC, Leong YW, Tjiu WW, Wong PK, He CB (2011) Stable dispersions of hybrid nanoparticles induced by stereocomplexation between enantiomeric poly(lactide) star polymers. Langmuir 27:10538–10547CrossRefPubMedGoogle Scholar
  69. 69.
    Michell RM, Müller AJ, Spasova M, Dubois P, Burattini S, Greenland BW, Hamley IW, Hermida-Merino D, Cheval N, Fahmi A (2011) Crystallization and stereocomplexation behavior of poly(d- and l-lactide)-b-poly(n, n-dimethylamino-2-ethyl methacrylate) block copolymers. J Polym Sci B Polym Phys 49:1397–1409CrossRefGoogle Scholar
  70. 70.
    Purnama P, Jung Y, Kim SH (2013) Melt stability of 8-arms star-shaped stereocomplex polylactide with three-dimensional core structures. Polym Degrad Stab 98:1097–1101CrossRefGoogle Scholar
  71. 71.
    Sakamoto Y, Tsuji H (2013) Stereocomplex crystallization behavior and physical properties of linear 1-arm, 2-arm, and branched 4-arm poly(l-lactide)/poly(d-lactide) blends: effects of chain directional change and branching. Macromol Chem Phys 214:776–786CrossRefGoogle Scholar
  72. 72.
    Andersson SR, Hakkarainen M, Inkinen S, Södergård A, Albertsson A-C (2012) Customizing the hydrolytic degradation rate of stereocomplex PLA through different PDLA architectures. Biomacromol 13:1212–1222CrossRefGoogle Scholar
  73. 73.
    Shao J, Sun J, Bian X, Cui Y, Li G, Xuesi C (2012) Investigation of poly(lactide) stereocomplexes: 3-armed poly(l-lactide) blended with linear and 3-armed enantiomers. J Phys Chem B 116:9983–9991CrossRefPubMedGoogle Scholar
  74. 74.
    Geschwind J, Rathi S, Tonhauser C, Schömer M, Hsu SL, Coughlin EB, Frey H (2013) Stereocomplex formation in polylactide multiarm stars and comb copolymers with linear and hyperbranched multifunctional PEG. Macromol Chem Phys 214:1434–1444CrossRefGoogle Scholar
  75. 75.
    Brzeziński M, Biedroń T, Tracz A, Kubisa P, Biela T (2014) Spontaneous formation of colloidal crystals of PLA stereocomplex microspheres and their hierarchical structure. Macromol Chem Phys 215:27–31CrossRefGoogle Scholar
  76. 76.
    Nouri S, Dubois C, Lafleur PG (2015) Homocrystal and stereocomplex formation behavior of polylactides with different branched structures. Polymer 67:227–239CrossRefGoogle Scholar
  77. 77.
    Nouri S, Dubois C, Lafleur PG (2015) Effect of chemical and physical branching on rheological behavior of polylactide. J Rheol 59:1045–1063CrossRefGoogle Scholar
  78. 78.
    Gardella L, Basso A, Prato M, Monticelli O (2015) On stereocomplexed polylactide materials as support for PAMAM dendrimers: synthesis and properties. RSC Adv 5:46774–46784CrossRefGoogle Scholar
  79. 79.
    Cheerarot O, Baimark Y (2015) Thermal and mechanical properties of biodegradable star-shaped/linear polylactide stereocomplexes. J Chem 2015:206123CrossRefGoogle Scholar
  80. 80.
    Tsuji H, Ogawa M, Arakawa Y (2016) Homo- and stereocomplex crystallization of star-shaped four-armed stereo diblock copolymers of crystalline and amorphous poly(lactide)s: effects of incorporation and position of amorphous blocks. J Phys Chem B 120:11052–11063CrossRefGoogle Scholar
  81. 81.
    Nederberg F, Appel E, Tan JPK, Sung HK, Fukushima K, Sly J, Miller RD, Waymouth RM, Yang YY, Hedrick JL (2009) Simple approach to stabilized micelles employing miktoarm terpolymers and stereocomplexes with application in paclitaxel delivery. Biomacromol 10:1460–1468CrossRefGoogle Scholar
  82. 82.
    Isono T, Kondo Y, Otsuka I, Nishiyama Y, Borsali R, Kakuchi T, Satoh T (2013) Synthesis and stereocomplex formation of star-shaped stereoblock polylactides consisting of poly(l-lactide) and poly(d-lactide) arms. Macromolecules 46:8509–8518CrossRefGoogle Scholar
  83. 83.
    Shao J, Tang Z, Sun J, Li G, Chen X (2014) Linear and four-armed poly(l-lactide)-block-poly(d-lactide) copolymers and their stereocomplexation with poly(lactide)s. J Polym Sci B Polym Phys 52:1560–1567CrossRefGoogle Scholar
  84. 84.
    Ma Y, Li W, Li L, Fan Z, Li S (2014) Stereocomplexed three-arm PPO–PDLA–PLLA copolymers: synthesis via an end-functionalized initiator. Eur Polym J 55:27–34CrossRefGoogle Scholar
  85. 85.
    Tsuji H, Yamashita Y (2015) Highly accelerated stereocomplex crystallization by blending star-shaped 4-armed stereo diblock poly(lactide)s with poly(d-lactide) and poly(l-lactide) cores. Polymer 55:6444–6450CrossRefGoogle Scholar
  86. 86.
    Tsuji H, Ozawa R, Matsumura N (2016) Effect of incorporated star-shaped four-armed stereo diblock poly(lactide) on the crystallization behavior of linear one-armed poly(l-lactide) or poly(d-lactide). Polym J 48:209–213CrossRefGoogle Scholar
  87. 87.
    Tsuji H, Matsumura N, Arakawa Y (2016) Stereocomplex crystallization and homocrystallization of star-shaped four-armed stereo diblock poly(lactide)s with different l-lactyl unit contents: isothermal crystallization from the melt. J Phys Chem B 120:1183–1193CrossRefPubMedGoogle Scholar
  88. 88.
    Tsuji H, Matsumura N (2016) Stereocomplex crystallization of star-shaped four-armed stereo diblock poly(lactide)s with different molecular weights: isothermal crystallization from the melt. Macromol Chem Phys 217:1547–1557CrossRefGoogle Scholar
  89. 89.
    Tsuji H, Matsumura N, Arakawa Y (2016) Stereocomplex crystallization and homo-crystallization of star-shaped four-armed stereo diblock poly(lactide)s during precipitation and non-isothermal crystallization. Polym J 48:1087–1093CrossRefGoogle Scholar
  90. 90.
    Tsuji H, Ogawa M, Arakawa Y (2017) Stereocomplex crystallization of linear two-armed stereo diblock copolymers: effects of chain directional change, coinitiator moiety, and terminal groups. J Phys Chem B 121:2695–2702CrossRefPubMedGoogle Scholar
  91. 91.
    Tsuji H, Ozawa R, Arakawa T (2017) Stereocomplex crystallization of star-shaped four-armed stereo diblock poly(lactide) from the melt: effects of incorporated linear one-armed poly(l-lactide) or poly(d-lactide). J Phys Chem B 121:9936–9946CrossRefPubMedGoogle Scholar
  92. 92.
    Tsuji H, Ikada Y (1995) Properties and morphologies of poly(l-lactide): 1. Annealing condition effects on properties and morphologies of poly(l-lactide). Polymer 36:2709–2716CrossRefGoogle Scholar
  93. 93.
    He Y, Xu Y, Wei J, Fan Z, Li S (2008) Unique crystallization behavior of poly(l-lactide)/poly(d-lactide) stereocomplex depending on initial melt states. Polymer 49:5670–5675CrossRefGoogle Scholar
  94. 94.
    Bao R-Y, Yang W, Jiang W-R, Liu Z-Y, Xie B-H, Yang M-B (2013) Polymorphism of racemic poly(l-lactide)/poly(d-lactide) blend: effect of melt and cold crystallization. J Phys Chem B 117:3667–3674CrossRefPubMedGoogle Scholar
  95. 95.
    Na B, Zhu J, Lv R, Ju Y, Tian R, Chen B (2014) Stereocomplex formation in enantiomeric polylactides by melting recrystallization of homocrystals: crystallization kinetics and crystal morphology. Macromolecules 47:347–352CrossRefGoogle Scholar
  96. 96.
    Pan P, Kai W, Zhu B, Dong T, Inoue Y (2007) Polymorphous crystallization and multiple melting behavior of poly(l-lactide): molecular weight dependence. Macromolecules 40:6898–6905CrossRefGoogle Scholar
  97. 97.
    Kawai T, Rahman N, Matsuba G, Nishida K, Kanaya T, Nakano M, Okamoto H, Kawada J, Usuki A, Honma N, Nakajima K, Matsuda M (2007) Crystallization and melting behavior of poly (l-lactic acid). Macromolecules 40:9463–9469CrossRefGoogle Scholar
  98. 98.
    Tsuji H, Tashiro K, Bouapao L, Hanesaka M (2012) separate crystallization and cocrystallization of poly(l-lactide) in the presence of l-lactide-based copolymers with low crystallizability, poly(l-lactide-co-glycolide) and poly(l-lactide-co-d-lactide). Macromol Chem Phys 213:2099–2112CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Environmental and Life Sciences, Graduate School of EngineeringToyohashi University of TechnologyToyohashiJapan

Personalised recommendations